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ABSTRACT 

In the current work a Building Integrated Solar Thermal System with Seasonal Storage is 
optimized with the use of TRNSYS modelling software in order to evaluate different options 
of integration of the solar collectors. The model calculates the space heating and domestic hot 
water needs of a typical single-family detached home in the city of Thessaloniki, Greece that 
has been built according to the latest building code. The contribution of the solar system, as 
well as the thermal load covered by the auxiliary conventional system is determined and the 
seasonal solar fraction is calculated. A parametric analysis on the impact of various solar 
collector areas and types, building integration type, as well as the volume of STES is also 
presented in order to optimize system design and obtain a seasonal combined solar fraction of 
at least 40%. 
 

1. Introduction 
 
The building sector represents one of the biggest energy consumers in the European Union 

(EU), accounting for more than 40% of final energy consumption (European Environment 
Agency, 2010). To combat that, the EU implemented a series of directives that promote the 
use of energy alternatives for buildings, used primarily for electricity, heating, cooling and the 
provision of hot water, that led to Directive 2010/31/EC (European Commission, 2010) which 
defined minimum rules on the performance of buildings and introduced energy certificates, 
taking into account the external climatic conditions and defining the Net Zero Energy 
Building (NZEB). These actions have led to a decrease in the final consumption of the 
residential sector from 316.7 Mtoe in 2000 to 287.1 Mtoe in 2014 (ODYSSEE, 2016). The 
noticed improvement in energy efficiency was a result of better thermal performance of 
buildings, more efficient electrical appliances (air conditioning) and heating systems 
(condensing boilers and heat pumps). Still, part of this improvement was counteracted by a 
growing number of electrical appliances, larger homes and the dispersion of central heating 
which led to an escalation in the average consumption per dwelling by 0.4% per year, 
compensating 60% of the energy efficiency development reached through technological 
modernization (European Environment Agency, 2016).  

Of the various renewable energy systems that can be installed in the building sector in order 
to cover energy requirements (electrical and thermal loads), solar energy systems are currently 
the most widely used, mostly in the form of solar thermal and photovoltaic systems. 
Especially for the southern countries of the EU, with their high annual solar radiation and 
temperatures, solar energy systems are already a viable alternative to fossil energy systems 
and are expected to become even more efficient and cost-competitive in the future (ECOFYS, 
2013). Most EU countries of the region enjoy high numbers of new installations annually both 
in the form of Domestic Solar Hot Water Systems (DSHWS) and of grid connected 
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photovoltaic systems, while the biggest potential is expected for renewable combi systems that 
generate heat for space heating purposes in winter times, cooling through air-conditioning 
systems in summer and domestic hot water throughout the year.  

In Greece, solar energy systems enjoy very high penetration rates both in the form of solar 
thermal systems as well as in the form of photovoltaics. DSHWS are a mature technology, 
boasting an installed capacity of 4.3 million m² (3000 MWth) at the end of 2014, placing 
Greece third in the per capita installed capacity in the EU (ESTIF, 2015).  

Although solar thermal systems are a mature technology, up to now most systems were not 
integrated into the buildings but were installed in available areas with the notion of function 
over form. Nowadays, architectural integration is a major issue in the development and 
spreading of solar thermal technologies, especially considering the necessity of their use as a 
step towards net zero energy buildings. Two integration options are available, façade and roof 
integration, although still the architectural quality of most existing building integrated solar 
thermal systems is considered low (Probst and Rocker, 2007). 

Another obstacle towards the further diffusion of solar thermal systems for space heating 
applications is the fact that solar potential is low during the heating period. To overcome this 
issue energy storage is necessary which can be achieved through three different mechanisms 
that can therefore be considered for seasonal storage of solar thermal energy as well. These 
concepts include sensible heat storage, latent heat storage and chemical reaction/thermo-
chemical heat storage (Novo et al, 2010). With regard to residential scale thermal storage 
applications, and particularly those currently used in practice, most of them store energy in the 
form of sensible heat, while latent and chemical methods are considered promising but not 
mature enough yet (Schmidt et al, 2004). 

The main difference between seasonal and short-term storage systems is located on their 
size, with the first to be much larger than the second (Brown et al, 1981). More specifically it 
has been evaluated that storage capacity per unit of collector area should be 100–1000 times 
larger for seasonal storage than for diurnal storage (Duffie and Beckman, 2013). 

Although in the literature a number of studies have dealt with seasonal storage solar thermal 
systems, through TRNSYS modelling either for large residential buildings (Terziotti et al, 
2012) or for a single family dwelling (Sweet et al, 2012), there has been limited work on 
optimizing these systems while on the same time trying to find the optimum building 
integration strategies for the solar collector array. 

To that end, in the present work, TRNSYS modelling software is used to simulate and 
optimize a building integrated Solar Thermal System with STES. The model calculates the 
space heating and domestic hot water needs of a typical 120 m² single-family detached home 
in the city of Thessaloniki, Greece that has been built according to the latest building code. 
The contribution of the solar system, as well as the thermal load covered by the auxiliary 
conventional system is determined and the seasonal solar fraction is calculated. A parametric 
analysis on the impact of various solar collector areas and types, building integration type, as 
well as the volume of STES is also presented in order to optimize system design and obtain an 
seasonal combined solar fraction of at least 40%. 

2. Building Topology and Solar System Description 

The residential sector in Greece was responsible for 29.4% of the total final energy 
consumption in Greece in 2012. According to a recent survey, every household in the country 
consumes, on average, 14 MWh in order to cover its needs. Thermal needs (for space heating 
and hot water production) account for 73%, while the remaining 27% is needed for the various 
electrical appliances (Hellenic Statistics Authority, 2013). With the incorporation of the 
Directive 2010/31/EC in the Greek Regulatory Framework, energy consumption for heating is 
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4. Conclusions 

The performance of a Building Integrated Solar Thermal System which utilizes Seasonal 
Thermal Energy Storage for domestic applications has been investigated in order to optimize 
its sizing. The system was able to cover as much as 70% of the heating load requirement for a 
typical building in Thessaloniki, Greece while also minimizing visual impact. 

However the increased heat demand and the extended tank discharge during the winter 
months make the operation of an auxiliary source in order to meet the entire load neseccary. 
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