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Outline

• Of software and change 

• Evolution, adaptation, self-adaptation 

• How can they supported dependably? 

• How can dynamic evolution be supported for 
continuously running systems?
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Software and change
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Facts

• Software undergoes continuous changes 

• Unrivalled by any other technology 

• Can be a problem 

• Can be an opportunity
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Evolution: positive view of change

Embeds the notions of  

• improvement 

• adaptation
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Formal methods can be integrated into 
software engineering practice to achieve 

dependability and effectively and efficiently turn 
change into evolution
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Why change?
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The world and the machine
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We build (abstract) machines to achieve certain 
real-world goals, satisfy certain requirements

P. Zave, M. Jackson. Four dark corners of requirements engineering.  
ACM Trans. Softw. Eng. Methodol. 6, 1 (January 1997)

Environment properties 
& assumptions

… they bridge the gap between                                                  
requirements and specifications                          
(M. Jackson & P. Zave)



Software engineer's responsibilities

• Develop a specification S for the machine (and an 
implementation) such, assuming that the environment 
behaves according to E, we can assure satisfaction of R 

• Formally, 

                E & S ⊨ R
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Dependability argumentE
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Change source: Getting the machine right

• It is an evolutionary process 

• Software design is an exploratory activity 

• Software evolves from incomplete to a progressively 
complete and stable solution 

• An then the solution becomes unstable to support further 
evolution
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Change source: Requirements

• Requirements are highly volatile 

• Hard to get 

• Change rapidly 

• Satisfaction of certain requirements generate new 
requirements 

E & S ⊨ R
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Change source: The environment

• Getting environment properties and assumptions right is 
hard
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• Properties  

• Domain laws (e.g., physics) 

• R: move a body from A to B  

• D: suitable force A->B causes motion A->B 

• S: send suitable force command to actuator

• Assumptions 

• Uncertain/incomplete/changeable knowledge 

• R: guarantee given avg response time to users   

• D: avg traffic X transactions/msec.

E

SR



More on properties vs. assumptions

• Property 

• it holds regardless of any software-to-be; e.g. physics’ laws                                                                                                                                                                                       

avgTrainAcceleration (t1, t2) > 0 implies trainSpeed (t2) > trainSpeed (t1) 

• Assumption 

• may expect a violation 

“temperature is in the range -40..+40 Celsius” 

“device generates a measure every 2 ms.” 

“humans behave as instructed by the machine” 
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E & S ⊨ R

Change source: The environment
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• Often wrong properties/assumptions are hypothesized 

• Often assumptions made at design time are uncertain 

• Often assumptions change

SE



The (in)famous Airbus accident (Sept. 1993)
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• Requirement: ReverseThrust —> TouchedDown 

• Machine Spec: ActuateRevThrust —> WheelPulsesOn 

• Assumptions:  

WheelPulsesOn <—> WheelsTurning 

ActuateRevThrust <—> ReverseThrust 

WheelsTurning <—> TouchedDown 

Sensor/actuator 
correctness 
assumption

OK?



The notion of failure

• Failure = broken dependability argument           

• Functional or nonfunctional failure 

• not necessarily a "catastrophic event"  

• includes violation of quality of service, which may 
lead to financial losses, penalties, or damage to 
reputation 

• Experienced or predicted failures drive evolution
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A relevant case: multi-owner systems

• Rely on third-party components to provide their own service, which 
make environment volatile 

• Platform as a Service (cloud) 

• Software as a Service 

• Reinvigorating Leslie Lamport's statement 

• a distributed system is a system where I can't get my work done 
because a computer has failed that I never heard of
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How can changes be handled?

• Evolution due to environment changes is called 
adaptation 

• Evolution and adaptation are traditionally performed off-
line, but they are increasingly performed on-line at run 
time (see continuously running systems) 

• Adaptation  can be self-managed (self-adaptive systems)
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• J. Kephart, D. Chess, The vision of autonomic computing. IEEE Comput. 2003 
• R. de Lemos et al., Software engineering for self-adaptive systems. Dagstuhl Seminar 2009 
• E. Di Nitto et al., A journey to highly dynamic, self-adaptive service-based applications. ASE Journal, 2008 
• Software Engineering for Adaptive and Self-Managing Systems (SEAMS), starting 2006                                     



The autonomic feedback loop
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Where are the founding principles?



Paradigm shift

• SaSs ask for a paradigm shift, which involves both 
development time (DT) and run time (RT) 

• The boundary between DT and RT fades  

• Reasoning and reacting capabilities must enrich the RT 
environment 

• detect change 

• reason about the consequences of change 

• react to change
20



Our view of the lifecycle
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Reqs
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Modelling
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Models&verification@run-time

• To detect change, we need to monitor the environment 

• The changes must be retrofitted to models of the 
machine+environment that support reasoning about the 
dependability argument (a learning step)  

• The updated models must be verified to check for 
violations to the dependability argument 

• In case of a violation, a self-adaptation must be triggered
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Known unknowns vs unknown unknowns
• The system can self-adapt to known unknowns 

• The unknowns are elicited at design time 

• The unknowns become known at run time via monitoring 

• If the system has been designed upfront to handle the now 
knowns, it can self-adapt 

• If not, a designer must be in the loop 

• There are limits to automation: unknown unknowns cannot even be 
monitored
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Whereof one cannot speak, thereof one must be silent 
(Wittgenstein)
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Zooming in

• I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli,  "Model Evolution by Run-
Time Parameter Adaptation”, ICSE 2009 

• C. Ghezzi, G. Tamburrelli, "Reasoning on Non Functional Requirements for 
Integrated Services”, RE 2009 

• A. Filieri, C. Ghezzi, G. Tamburrelli, “ Run-time efficient probabilistic model 
checking”, ICSE 2011 

• A. Filieri, C. Ghezzi, G. Tamburrelli, “Supporting Self-adaptation via 
Quantitative Verification and Sensitivity Analysis at Run Time, IEEE TSE, 
January 2016



An exemplary framework

• QoS requirements 

• performance (response time), reliability (probability of 
failure), cost (energy consumption) 

User

Integrated Service

Workflow 

W

Service 

S
1

<uses>

Service 

S
2

<uses>

Service 

S
n

<uses>

....

Sources of uncertainty  
(and change)

25



Non-functional requirements are quantitative

• Functional requirements are often qualitative ("the system shall close 
the gate as the sensor signals an incoming train" or "it should never 
happen that the gate is open and the train is in the intersection")  

• Non-functional requirements refer to quality and they are often 
quantitative ("average response time shall be less than 3 seconds"); 
often they are probabilistic 

• LTL, CTL temporal logics are typical examples of  qualitative 
specification languages 

• Non-functional requirements ask for quantitative logics and 
quantitative verification
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Formal modeling and analysis

• S, E can often be formalized via probabilistic Markovian 
models for non functional rquirements (reliability, 
performance, energy consumption) 

• R formalized via probabilistic temporal logic, e.g. PCTL 

• Verification performed via probabilistic model checking

27



Brief intro to Discrete Time Markov Chains
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A DTMC is defined by a tuple (S, s0, P, AP, L) where 

• S is a finite set of states 

• s0 ∈ S is the initial state 

• P: S×S→[0;1] is a stochastic matrix 

• AP is a set of atomic propositions 

• L: S→2AP is a labelling function. 

The modelled process must satisfy the Markov property, i.e., the probability distribution 
of future states does not depend on past states; the process is memoryless



An#example#

!A simple communication protocol operating with a channel!

C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008 

delivered try lost 

start 

1 

0.9 

1 

1 

0.1 

      S        D        T        L 
S    0        0        1        0 
D    1        0        0        0 
T     0      0.9       0      0.1 
L     0       0         1        0 
 

matrix representation 

Note: sum of probabilities for transitions leaving a given state equals 1
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Discrete Time Markov Reward Models

• Like a DTMC, plus 

• states/transitions labeled with a reward 

• rewards can be any real-valued, additive, non negative 
measure; we use non-negative real functions  

• Use in modeling 

• rewards represent energy consumption, average 
execution time, outsourcing costs, pay per use cost, 
CPU time
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Reward DTMC

• A R-DTMC is a tuple (S, s0, P, AP, L, µ), where S, s0, P, L 
are defined as for a DTMC, while µ is defined as follows: 

•  µ : S→R≥0 is a state reward function assigning a non-
negative real number to each state 

• ... at step 0 the system enters the initial state s0.    
At step 1, the system gains the reward µ(s0) 
associated with the state and moves to a new 
state...
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PCTL
• Probabilistic extension of CTL  

• In a state, instead of existential and universal quantifiers over paths we 
can predicate on the probability for the set of paths (leaving the state) 
that satisfy property 

• In addition, path formulas also include step-bounded until ϕ1 U
≤t

  ϕ2 

• An example of a reachability property  

P>0.8 [◊(system state = success)]
32

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

absorbing state 
1 



R-PCTL
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Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

true if expected state reward to be gained in the state entered at step k 
along the paths originating here meets the bound r

true if the expected reward cumulated after k steps meets the bound r
true if the expected reward cumulated before
a state satisfying ϕ is reached meets the bound r



Example 1

Expected state reward to be gained in the state entered at 
step k along the paths originating in the given state
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R��r(I
=k)

“The expected cost gained after exactly 10 time steps is 
less than 5”

R<5(I=10)



Example 2

Expected cumulated reward within k time steps 
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R��r(C
�k)

 “The expected energy consumption within the first 50 time 
units of operation is less than 6 kwh”

R<6(C
�50)



Example 3

Expected cumulated reward until a state satisfying ϕ is 
reached
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R��r(F�)

“The average execution time until a user session is complete is  
lower than 150 s”

R<150(F end)



A bit of theory

• Probability for a finite path                              to be traversed 
is 1 if              otherwise  

• A state sj is reachable from state si if a finite path exists 
leading to sj from si 

• The probability of moving from si to sj in exactly 2 steps         
is                             which is the entry          of  

• The probability of moving from si to sj in exactly k steps  is the 
entry          of 
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⇡ = s0, s1, s2, . . .
|⇡| = 1

Q|⇡|�2
k=0 P (sk, sk+1)

P
s

x

2S

p
ix

· p
xj

(i, j) P 2

(i, j) P k



A bit of theory

• A state is recurrent if the probability that it will be eventually visited 
again after being reached is 1; it is otherwise transient (a non-zero 
probability that it will never be visited again) 

• A recurrent state sk where pk, k = 1 is called absorbing 

• Here we assume DTMCs to be well-formed, i.e. 

• every recurrent state is absorbing 

• all states are reachable from initial state 

• from every transient state it is possible to reach an absorbing 
state
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An example
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0

BB@

0 1 0 0
0.2 0 0.5 0.3
0 0 1 0
0 0 0 1

1

CCA0 1

2

3

1

0.2

0.5

0.3

Probability of reaching an absorbing state (e.g., 2)
2 can be reached by reaching 1 in 0, 1, 2,...∞ steps and then 2 with prob .5

(1+0.2+0.22+0.23+ ... ) x 0.5 = ( ∑ 0.2n) x 0.5 = (1/(1-0.2)) x 0.5 = 0.625

Similarly, for state 3, (1/(1-0.2)) x 0.3 = 0.375

Notice that an absorbing state is reached with prob 1



A bit of theory
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Qk ! 0 as k ! 1

• Consider a DTMC with r absorbing and t transient states
• Its matrix can be restructured as
•                         

- Q is a nonzero t × t matrix
- R is a t × r matrix
- 0 is a r × t matrix
- I is a r × r identity matrix

• Theorem
- In a well-formed Markov chain, the probability of the process to 

be eventually absorbed is 1

P =

✓
Q R
0 I

◆
(1)



Reachability properties

41

• A reachability property has the following form

states that the probability of reaching a state where 
holds matches the constraint   

• Typically, they refer to reaching an absorbing state 
(denoting success/failure for reliability analysis)

• It is a flat formula (i.e. no subformula contains           )
• These properties are the most commonly found

P./p(⌃ �)

P./p(·)



A bit on theory
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Consider again

ni,k  expected # of visits of transient state sk from si, i.e., 
the sum of the probabilities of visiting it 0, 1, 2, ...times
Theorem: The geometric series converges to
Consider                  . The probability of reaching 
absorbing state sk from si is   

P =

✓
Q R
0 I

◆
(1)

N = I +Q1 +Q2 +Q3 + · · · =
1X

k=0

Qk

(I �Q)�1

B = N ⇥R
bik =

X

k=0..t�1

nij · rjk
j



Proving reachability
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)Pr( Ends =◊ ∑ ⋅=
j

Endjj rn ,,0

n0,j is the sum of the probabilities to reach state j 
in 1, 2, 3, ... ∞ steps



Model checking

• SPIN (Holzmann) analyzes LTL properties for LTSs 
expressed in Promela 

• (Nu)SMV (Clarke et al, Cimatti et al.) can also analyze CTL 
properties and uses a symbolic representation of visited 
states (BDDs) to address the “state explosion problem” 

• PRISM (Kwiatkowska et al.) and MRMC (Katoen et al.) 
support Markov models and perform probabilistic model 
checking
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Question

• How can modeling notations and verification fit software 
evolution? 

• Obvious solution: 

• A modification to an existing system viewed as a new 
system 

• No support to reasoning on the changes and their 
effects
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An e-commerce case study
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3 probabilistic requirements:
R1:  “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as                                     

ReturningCustomer <  0.035”
R3: “Probability of an authentication failure is less then < 0.06”

Login

Search

Buy

[buy more]

NrmShipping

ExpShipping

[proceed]

[normal]

CheckOut

Logout

[express]

Returning customers
vs

new customers



Assumptions

User profile assumptions 

External service assumptions (reliability)

RC
RC

RC
NC

NC
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R1:  Probability of success > 0.8                         
R2:  Probability of ExpShipping failure for ReturningCustomer < 0.035                           

S, E, R in practice
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What happens at run time?

• Actual environment behavior is monitored 

• Model updated  

• e.g., by using a Bayesian approach to estimate 
DTMC matrix (posterior) given run time traces and 
prior transitions

49

A-priori Knowledge A-posteriori Knowledge



Verification @ runtime as a trigger for adaptation

• The model has a predictive nature 

• Requirements violation on model predicts future 
violations 

• This may lead to preventive adaptation prior to violations 

• Otherwise it leads to self-healing adaptation

50
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Models&Verification @ runtime: challenges

• Paradigm change 

• The development-time / run-time boundary fades 

• Real-time constraints prevent applicability of current 
techniques
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Towards efficient verification @ runtime

Make verification incremental 

• Instead of checking the model after any change, just 
try to restrict the check to what has changed 

• easier to say than do!
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The quest for incrementality

• Is a fundamental engineering principle 

Given a system (model) S, and a set of properties P met by S  

Change = new pair S’, P’ where S’= S + ∆S and P’= P + ∆P 

Let ∏ be the proof of S against P 

The proof ∏’ of P’ against S’ can be done by just performing 
a proof increment ∆∏ such that  ∏’ = ∏ + ∆∏  

Expectation: ∆∏ easy and efficient to perform
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How can we achieve it?

• By construction and change anticipation 

• leveraging modularity and encapsulation 

• assume/guarantee 

• By automatic scope detection

55



An effective technique: incrementality by 
parameterization

• Requires anticipation of changing parameters, represented 
as symbolic variable 

• The model is partly numeric and partly symbolic 

• Evaluation of the verification condition requires partial 
evaluation (mixed numerical/symbolic processing) 

• Result is a formula (polynomial for reachability on DTMCs) 

• Evaluation at run time substitutes actual values to symbolic 
parameters and is very efficient
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Working mom paradigm


Cook first


Warm-up later



The parametric WM approach
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The approach

• Assumes that the Markov model is well formed  

• Works by symbolic/numeric matrix manipulation 

• All of (R) PCTL covered 

• Does partial evaluation (mixed computation, Ershov 1977) 

• Expensive design-time partial evaluation, fast run-time 
verification 

• symbolic matrix multiplications, but very sparse and 
normally only few variables
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An example
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r = 0.85− 0.85 ⋅ x + 0.15 ⋅ z− 0.15 ⋅ x ⋅ z− y ⋅ x
0.85+ 0.15 ⋅ z

r = Pr(◊ s = 5)> r

Additional benefit: sensitivity analysis



Back to theory: flat reachability formula
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We need to evaluate

where B = N x R; N is the inverse of I - Q,

ni,k  expected # of visits of transient state sk from si, i.e., 
the sum of the probabilities of visiting it 0, 1, 2, ...times
Matrix R is available, we need to compute N

In our context, N must be evaluated partially, i.e., by a 
mix of numeric and symbolic processing

P =

✓
Q R
0 I

◆
(1)

N = I +Q1 +Q2 +Q3 + · · · =
1X

k=0

Qk

Pr(true U {sj 2 T}) =
X

sj2T

b0j



Design-time vs run-time costs

• Design-time computation expensive because of numeric/symbolic 
computations 

• Complexity reduced by 

• sparsity 

• few symbolic transitions 

• careful management of symbolic/numeric parts 

• parallel processing 

• Run-time computation extremely efficient: polynomial formula for reachability, 
minor additional complications for full R-PCTL coverage (but still very efficient!) 
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Run-time performance comparison
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PRISM
MRMC
WM

Ti
m

e 
(m

s)

1

10

100

1000

System size (# of states)
50 100 150 200 250 300 350 400 450 500

128 randomly generated DTMCs, 50 to 500 states (with step 50), two absorbing states, and a normally 
distributed number of outgoing transitions per state with mean 10 and standard deviation 2. The number 
of variable states is 4 in each model, thus the number of parameters of each model is normally distributed  
with mean 40 and standard deviation 8.



Where are we?

• Change is quintessential to software 

• not a nuisance nor something to handle as an afterthought 

• Formal methods can set change management on systematic 
and  rigorous grounds that lead to effective and efficient 
evolution 

• They can be brought to runtime to self-manage response to 
environment changes  

• How can they support a holistic response to changes 
throughout the software lifetime?
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Looking forward: continuous assurance

• Change of perspective: DevOps—the current hype 

• Development and operation viewed as a continuum 

• Focus on assurance that system complies with 
requirements drives both development and operation 

• Focus on continuous assurance requires revisiting 
verification methods in the light of continuous change
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Looking forward

• Software development has become increasingly 
incremental, change-oriented, agile
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B. Meyer,  "Agile! The good, the Hype and the Ugly”, Springer, 2015

• The ugly 

• deprecation of upfront activities: requirements 
(replaced by user stories), specification (replaced 
by tests), modeling…

• The good 

• continuous testing: do not wait for a complete 
system…

• Get rid of the ugly and move the good one 
step further 

• automate upfront activities and integrate 
them in agile development 

• can we achieve verification driven 
development in practice?



What needs to be done

• How can we integrate modelling and verification into iterative, 
agile development? 

• Support incomplete, partial specifications 

• Support reasoning about changes: support incremental 
verification
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• G. Bruns, P. Godefroid. Model checking partial state spaces with 3-valued temporal logics. In 
Computer Aided Verification, vol. 1633 LNCS, Springer, 1999. 

• G. Bruns, P. Godefroid. Generalized model checking: Reasoning about partial state spaces. 
CONCUR 2000 

• M. Chechik, B. Devereux, S. Easterbrook, A. Gurfinkel. Multi-valued symbolic model-
checking. ACM TOSEM, 2003.  

• S. Uchitel, G. Brunet, M. Chechik. Synthesis of partial behavior models from properties and 
scenarios. IEEE TSE 2009.  

• G. Brunet, M. Chechik, D. Fischbein, N. D’Ippolito, S. Uchitel,Weak alphabet merging of 
partial behaviour models. ACM TOSEM 2011.



Support to incomplete, partial specifications

• Given an incomplete system (model) S, and a set of 
properties P to be met by S  

• Verification can return YES, NO, MAYBE 

• In the MAYBE case, it should compute proof 
obligations for the incomplete parts 

• Completion only verifies proof obligations
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Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM 

• a functionality whose detail model is postponed

68

?

E(¬(    ) )U(    )

??
MAYBE
and this: "blah blah"
is the proof obligation



Partial models vs. incremental changes

• Initial decomposition affects the kind of incrementally we 
get 

• Can we achieve incremental verification independent of 
hierarchical decomposition? 

• Can a general approach to incremental verification be 
found independent of model/program and property 
language to verify?
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