
HYBRID CLOUD-BASED 
APPLICATIONS 

Luciano Baresi
luciano.baresi@polimi.it



LUCIANO BARESI

Professor @ DEIB – Politecnico di Milano
 Researcher at Cefriel
 Visiting researcher

 University of Oregon (USA)

 University of Paderborn (Germany)

Research interests
 Software engineering

 Dynamic software architectures

 Service-oriented applications

 Mobile applications

 Cloud computing

home.deib.polimi.it/baresi



VIRTUAL MACHINES



CLOUD COMPUTING

“The interesting thing about cloud computing is that weʼve redefined 
cloud computing to include everything that we already do. […] The 

computer industry is the only industry that is more fashion-driven than 
womenʼs fashion. Maybe Iʼm an idiot, but I have no idea what anyone 
is talking about. What is it? Itʼs complete gibberish. Itʼs insane. When is 

this idiocy going to stop?

Larry Ellison
during Oracleʼs Analyst Day



CLOUD COMPUTING TAXONOMY

Higher Cost & More Control Lower Cost & Higher Agility



Amazon Web Services Are...

A set of APIs and business models which give developers 
access to Amazon technology and content

Data As a Service
Amazon E-Commerce Service
Amazon Historical Pricing

Infrastructure As a Service
Amazon Simple Queue Service
Amazon Simple Storage Service
Amazon Elastic Compute Cloud

Search As a Service
Alexa Web Information Service
Alexa Top Sites
Alexa Site Thumbnail
Alexa Web Search Platform

People As a Service
Amazon Mechanical Turk



WHAT DOES HYBRID MEAN HERE?

Some components stay local and others go on the cloud

Some virtual machines on different cloud infrastructures

Systems assembled by means of services provided by different cloud 
solutions



HOW ABOUT CONTAINERS?



CARGO TRANSPORT



CARGO CONTAINERS



BACK TO CLOUD COMPUTING



CONTAINER SYSTEM FOR CODE……



based on material by Patel Jitendra



WHAT IS DOCKER?

Docker is an open-source project that automates the deployment 
of applications inside software containers, by providing an additional 
layer of abstraction and automation of operating system–level 
virtualization on Linux.

[Source: en.wikipedia.org]

Open platform for developers and sysadmins to build, ship and run 
distributed applications

Can run on popular 64-bit Linux distributions with kernel 3.8 or later

Supported by several cloud platforms including Amazon EC2, Google 
Compute Engine, and Rackspace



FEATURES…. 

Light-Weight
 Minimal overhead (cpu/io/network)
 Based on Linux containers
 Uses layered filesystem to save space (AUFS/LVM)
 Uses a copy-on-write filesystem to track changes

Portable
 Can run on any Linux system that supports LXC (today)
 0.7 release includes support for RedHat/Fedora family
 Raspberry pi support
 Future plans to support other container tools (lmctfy, etc.)
 Possible future support for other operating systems (Solaris, OSX, Windows?)

Self-sufficient
 A Docker container contains everything it needs to run
 Minimal Base OS
 Libraries and frameworks
 Application code
 A docker container should be able to run anywhere that Docker can run. 



VIRTUAL MACHINE VERSUS CONTAINER



VIRTUAL MACHINE VERSUS CONTAINER



TECHNOLOGY

libvirt: Platform Virtualization

LXC (LinuX Containers): Multiple isolated Linux systems (containers) on 
a single host

Layered File System

Docker images

Docker containers
[Source: https://docs.docker.com/terms/layer/]



HOW DOES IT WORK ?

You can build Docker images that hold your applications

You can create Docker containers from those Docker images to run 
your applications.

You can share those Docker images via Docker Hub or your own 
registry



THEN …

Easy to build, run & share containers

Rapidly expanding ecosystem

Better performance vs. VMs

Layered file system gives us git-like control of images

Reduces complexity of system builds



MICROSERVICES

Many smaller (fine grained), clearly scoped services
 Single Responsibility Principle
 Domain Driven Development
 Bounded Context
 Independently Managed

Clear ownership for each service
 Typically need/adopt the “DevOps” model

Attribution: Adrian Cockroft, Martin Fowler …



COMPOSABILITY– UNIX PHILOSOPHY

Write programs that do one thing and do it well

Write programs to work together



WHY?

Faster and simpler deployments and rollbacks
 Independent Speed of Delivery (by different teams)

Right framework/tool/language for each domain
 Recommendation component using Python?, Catalog Service in Java ..

Greater Resiliency
 Fault Isolation

Better Availability
 If architected right



RESOURCE MANAGEMENT
Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni Quattrocchi. 
Advanced Self-adaptation of cloud applications with containerization and control theory. FSE’16, to appear



RUNTIME MANAGEMENT OF CLOUD 
APPLICATIONS
Satisfy functional and non-functional requirements

Dynamic resource allocation to manage a changing workload (number 
of requests per time unit)

Runtime management through autonomic adaptation

Focus on Virtual Machines both in academia and industry

Many kind of adaptations, many things to adapt



ELASTIC PROVISIONING

Containers enable adaptation at the Operating System layer

Instant reaction to workload changes by dynamically starting, 
terminating or updating (vertical scaling) containers

We deploy many containers inside each VM

Finer granularity than working only with VMs

Resources allocated to a middleware (e.g., MySQL, JBoss AS) can 
change during execution



SUPPORTED ARCHITECTURE



PLANNER

Control-theoretical design, discrete-time

Each application tier is endowed with a local controller devoted to 
maintaining a desired response time

The controller computes the resources (i.e., CPU cores and memory) 
that need to be made available to that tier 

Five generic actions
 Container actions (create, update, terminate)
 VM actions (create, terminate)



CONTROL-THEORETICAL DESIGN (I)

Grey-box approach

The characteristic function is monotonically decreasing towards a 
possible lower horizontal asymptote (finite parallelism degree)

Not linear, depends on c (core) and r (workload); c1,2,3 obtained 
through profiling

Invertible in the signal range of interest



ACTIONS

Each controller emits the requested resource allocation for a tier

These data are then passed to an ILP solver to be translated into 
actions (create VM, create container, …)

The ILP formulation is a variation of the 2-dimensional bin packing 
problem: the bins are the VMs and we need to pack containers inside 
them

Each of the five actions has a weight w, such that containers actions 
are preferred over VM actions



PLATFORM ADAPTATION

Scripts declared inside the Applications Description file and mounted 
into containers when launched

Separated from the planner that we keep technology agnostic

When some events happen we invoke the specific hook that manages 
the particular event



SOME RESULTS
AWS autoscaling ECoWare VM only

ECoWare VM + Containers

RT Core SLA




