
MONITORING OF
CLOUD/SERVICE-BASED SYSTEMS

Luciano Baresi
luciano.baresi@polimi.it

LUCIANO BARESI

Professor @ DEIB – Politecnico di Milano
 Researcher at Cefriel
 Visiting researcher

 University of Oregon (USA)

 University of Paderborn (Germany)

Research interests
 Software engineering

 Dynamic software architectures

 Service-oriented applications

 Mobile applications

 Cloud computing

home.deib.polimi.it/baresi

Modelli di riferimento e pattern SOA3

SOA: a couple of definitions (IBM)

“A service-oriented architecture (SOA) is an application framework
that takes everyday business applications and breaks them down
into individual business functions and processes, called services.
An SOA lets you build, deploy and integrate these services
independent of applications and the computing platforms on which
they run.”

A Service-Oriented Architecture is an enterprise-scale IT architecture for linking
resources on demand. These resources are represented as business-aligned services
which can participate and be composed in a value-net, enterprise, or line of business to
fulfill business needs. The primary structuring element for SOA applications is a service as
opposed to subsystems, systems, or components.

SOA is a business-driven IT architectural approach that supports integrating your business
as linked, repeatable business tasks or services.

See also: “Service-Oriented Architecture and Enterprise Architecture, Part 1: A framework for understanding how SOA and Enterprise Architecture work
together” (http://www-128.ibm.com/developerworks/webservices/library/ws-soa-enterprise1/)

Modelli di riferimento e pattern SOA4

SOA: multiple perspectives

Business

Architecture

Implementation

A set of services that a business wants to expose
to customers and clients

An architectural style which requires a service
provider, requestor and a service description.

A set of architectural principles, patterns and
criteria, which address characteristics such as
modularity, encapsulation, loose coupling,
separation of concerns, reuse, composable and
single implementation.

A programming model complete with standards,
tools, methods and technologies such as web
services.

SERVICE COMPOSITIONS

A BIT OF HISTORICAL PERSPECTIVE

COMPOSITION MODELS

Orchestration
 Intra-process
 Process controlled by one party

Choreography
 Inter-processes
 Sequence of observable messages
 Conversation among equals

SOA AND THE ESB STACK

DYNAMO

Design by contract

Separation of concerns
 Business logic defined separately from supervision
 Supervision is a cross-cutting concern

Monitoring (WSCoL)
 Assertion-based

 The functionality and QoS needed by the process

 Pre- and post-conditions on the interactions with partner services

Recovery (WSReL)
 ECA rules

OVERALL IDEA

Execution

Engine

(BPEL)

Data

Collection
Recovery

Data

Analysis

Data from

previous

executions

NET

External

Data Source

SUPERVISION RULES

WSCOL

Declarative specification of behavioral properties

Data Collection
 Internal, external, and historical variables

Data Analysis
 Boolean operators (and, or, not, implies, if and only if)
 Relational operators (<,>,==, <=, >=)
 Mathematical operators (+, -, *, /, %)
 Universal and existential quantifiers
 Data computation - max, min, avg, sum, product
 Type specific functions - length, starts-with, etc.

WSREL

Event
 Anomalies signaled by monitoring

Conditions
 WSCoL expressions

Strategies
 Each is a sequence of atomic actions

Rules have instance validity

Built-in solutions
 Retry
 Change supervision rule
 Change partner link
 Call handlers
 Warn and stop
 Rollback
 Restore

Third-party solutions
 Rebind
 Reorganize
 Renegotiate
 …

AOP-BASED SOLUTION

MULTI-LAYERED SYSTEMS

IaaS
Infrastructure as a Service

PaaS
Platform as a Service

SaaS
Software as a Service

CLOUDS AND SOA

SOA enabled cloud computing to what is today

Physical infrastructure like SOA must be discoverable, manageable
and governable

REST Protocol widely used (Representational State Transfer)

MULTI-LEVEL MONITORING

Collect

Aggregate

Analyze

Monitoring

So
ftw

ar
e

as
 a

Se

rv
ic

e

Pl
at

fo
rm

 a
s

a
Se

rv
ic

e

Probes Probes

Event Bus

A lot of
probed data...

In
fra

st
ru

ct
ur

e
as

 a

Se
rv

ic
e

Aggregators and Analyzers collaborate to produce the knowledge we need!

So
ftw

ar
e

as
 a

Se

rv
ic

e

Pl
at

fo
rm

 a
s

a
Se

rv
ic

e

Probes Probes

Event Bus

In
fra

st
ru

ct
ur

e
as

 a

Se
rv

ic
e

Reusable Aggregators and Analyzers
mlCCL Spec

TWO MAIN CONTRIBUTIONS

Multi-layer Collection and Constraint Language (mlCCL)
 Declarative language for defining

 The runtime data we want to collect from the various layers

 How to aggregate the data to build higher-level knowledge

 How to analyze the data to identify undesired behavior

ECoWare FrameWork
 Event Correlation middleWare
 Supports mlCCL specifications
 Provides advanced data aggregation and analysis

DATA COLLECTION

Data described in terms of Service Data Objects (SDOs)
 Language-agnostic
 Set of named properties

 Single- or multi-valued (array)

 Primitive (number, string, boolean) or complex (SDO)

Data Collection is about configuring probes

Two kinds of Data Collection:
 Message Collection
 Indicator Collection

DATA AGGREGATION

Aggregate multiple SDOs into one
 SDOs can be collected at different times…
 When to aggregate? What to aggregate?
 Primary vs. Secondary Events

 To aggregate a “window” of events, attach window(interval) to a secondary event

Aggregator

primary

DATA ANALYSIS

Predicate over the contents of our SDOs
 append get(propertyName) to alias
 Further manipulate the data

 Numbers: absolute value, square root

 Strings: substring, length, replace

 Arrays: legnth, i-th value, subset of values that satisfy a property

 Array of Numbers: sum, avg, min, max

When should I perform the data analysis?
 We use primary again!

ECOWARE

collectd

Output
Adapter Output Adapter

Monitoring
Intent

Input
Adapter

Output
Adapter

KPI Processor

Siena P/S Bus

Input
Adapter

Output
Adapter

Aggregator

Input
Adapter

Output
Adapter

Analyzer

Persistent
Storage

Input
Adapter

Output
Adapter

Input
Adapter

Visualization
Tool

ECoW
areFrascati

ECoWare DashboardUbuntu
VM

MULTI-LEVEL ADAPTATION

Plan

Execute

Reacting

So
ftw

ar
e

as
 a

Se

rv
ic

e

Pl
at

fo
rm

 a
s

a
Se

rv
ic

e

Actuators Actuators

Event Bus

In
fra

st
ru

ct
ur

e
as

 a

Se
rv

ic
e

Planner

Executor

So
ftw

ar
e

as
 a

Se

rv
ic

e

Pl
at

fo
rm

 a
s

a
Se

rv
ic

e

Actuators Actuators

Event Bus

In
fra

st
ru

ct
ur

e
as

 a

Se
rv

ic
e

Planner

Executor ExecutorExecutor

PLANNING

Planning is responsible for defining an adaptation strategy that can
fix the problem

There are many important aspects we can consider. Some examples
are:
 the kind of resources we can add or remove
 the cost of adding or removing resources
 previous adaptations – to avoid continuous adaptation (cool-down)
 nature of client interactions – what call are they making?
 history of client interactions – what will supposedly happen next?

RESOURCE PLANNER

server

Pool of Free Servers

+
SysConfCurrent AnalyzePerf

SysConfNew

RSLA λ

Model

RNew

RNew satisfies RSLA

yesno return SysConfNew

S

SysConfCurrent = SysConfNew

PERFORMANCE MODEL
The model considers the app’s multiple tiers and multiple levels

Application Server 1Load
Balancer

Web Server

DatabaseCPU - 2.66GHz Cache - 6MB RAM - 32GB

DCPU1 DCache1 DRam1

Application Server 2

CPU - 2.66GHz Cache - 6MB RAM - 32GB

DCPU2 DCache2 DRam2

DDB

DWS

λ

We used JMT as our model solver

REQUIREMENTS

9

!"#$%#&'()"!"#$%#&'()"

Kaos

FLAGS

Fuzzy Live Adaptive Goals for Self-adaptive systems

 Functionality
 Qualities of service
 Adaptation capabilities

 Distinction between crisp and fuzzy goals

CRISP GOALS

Formalization

Refinement

Operationalization

Nothing about
 Adaptation
 Uncertainty and small deviations
 Unforeseen adaptation

KAOS

FUZZY GOALS

Satisfaction level between [0, 1]

Soft-goals

Tolerate small/transient deviations

Adaptation based on satisfaction levels

KAOS

Fuzzy

KAOS

ADAPTATION GOALS

WHY (objective, related goals)

WHEN (trigger and conditions)

HOW (adaptation actions)

AG

GOALS AS LIVE ENTITIES

KAOS

AG

Fuzzy

Application

Data
Collection Monitor

Decisor
Live

FLAGS
model`

Live
FLAGS
model

Live
FLAGS
model

PUTTING THINGS TOGETHER

Functional goals

Non-functional goals

Adaptation goals

QUESTIONS?

