Energy Performance Indicator Tracking Schemes for the Continuous Optimisation of Refurbishment Processes in European Housing Stocks

Inclusion of New Buildings in Residential Building Typologies

Steps Towards NZEBs Exemplified for Different European Countries

- EPISCOPE Synthesis Report No. 1 -

(Deliverable D2.4)

October 2014

Co-funded by the Intelligent Energy Europe Programme of the European Union

Contract N°: IEE/12/695/SI2.644739

Coordinator:

IWU Institut Wohnen und Umwelt, Darmstadt / Germany Project duration: April 2013 - March 2016

Authors:

Britta Stein (editor) Tobias Loga (editor) Nikolaus Diefenbach (editor)	P01 - IWU	Institut Wohnen und Umwelt / Institute for Housing and Environment	Darmstadt / Germany
Bogdan Atanasiu Aleksandra Arcipowska Eleni Kontonasiou	P 02 - BPIE	Buildings Performance Institute Europe	Brussels / Belgium
Gašper Stegnar Andraž Rakušćek Marjana Šijanec Zavrl	P 03 - ZRMK	Building and Civil Engineering Institute ZRMK	Ljubljana, Slovenia
Kim B. Wittchen Jesper Kragh	P 04 - SBi	Danish Building Research Institute, AAU	Copenhagen / Denmark
Naghmeh Altmann-Mavaddat Maria Amtmann	P 05 - AEA	Austrian Energy Agency	Vienna / Austria
Jack Hulme Claire Summers	P 06 – BRE	Building Research Establishment Ltd.	Watford / United Kingdom
Elena Dascalaki Costas Balaras Popi Droutsa Simon Kontoyannidis	P07 - NOA	National Observatory of Athens	Athens / Greece
Marlies Van Holm Dieter Cuypers	P 08 – VITO	Flemish Institute for Technological Research	Mol / Belgium
Vincenzo Corrado Ilaria Ballarini	P 09 - POLITO	Politecnico di Torino – EnergyDepartment	Torino / Italy
Tomáš Vimmr Otto Villatoro	P 10 – STU-K	STU-K	Prague / Czech Republic
Marcin Badurek Michael Hanratty Bill Sheldrick	P 11 – Energy Action	Energy Action Limited	Dublin / Ireland
Tamás Csoknyai Sára Hrabovszky-Horváth	P 12 – BME	Budapest University of Technology and Economics	Budapest / Hungary
Leticia Ortega Begoña Serrano	P 13 – IVE	Valencian Institute of Building	Valencia / Spain
Despina Serghides Marina Markides Martha Katafygiotou	P 14 – CUT	Cyprus University of Technology	Limassol / Cyprus
Nico Nieboer Faidra Filippidou	P15 – DUT	Delft University of Technology	Delft / Netherlands
Santhiah Shanthirabalan Ulrich Rochard	P 16 – Pouget	Pouget Consultants	Paris / France
Helge Brattebø Igor Sartori Reyn O'Born	P 17 – NTNU/SINTEF	Norwegian University of Science and Technology / SINTEF Byggforsk	Trondheim / Norway
Milica Jovanovic Popovic Branislav Zivkovic Dusan Ignjatovic	Associated partner	University of Belgrade	Belgrade / Serbia

Published by Institut Wohnen und Umwelt GmbH Rheinstraße 65, 64295 Darmstadt / Germany www.iwu.de

October 2014

ISBN 978-3-941140-42-4

IWU order code 08/14

EPISCOPE website: <u>www.episcope.eu</u>

The sole responsibility for the content of this deliverable lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

L

Contents

Cor	itents		I
1	Intro	duction	1
2	Princ	ciples and Benchmarks for Nearly Zero-Energy Buildings	3
	2.1	European Legislation	3
	2.2	nZEB Principles	3
	2.3	Relation between cost optimality & nZEB10)
	2.4	Sources / References	2
3		sion of Different Energy Performance Levels for New Buildings in National dential Building Typologies15	5
	3.1	<at> Austria17</at>	7
	3.2	<be> Belgium</be>	1
	3.3	<cy> Cyprus48</cy>	5
	3.4	<cz> Czech Republic</cz>	7
	3.5	<de> Germany7</de>	1
	3.6	<dk> Denmark93</dk>	3
	3.7	<es> Spain105</es>	5
	3.8	<fr> France121</fr>	1
	3.9	<gb> England143</gb>	3
	3.10	<gr> Greece</gr>	7
	3.11	<hu> Hungary</hu>	5
	3.12	<ie> Ireland</ie>	5
		<it> Italy197</it>	
	3.14	<nl> The Netherlands</nl>	3
		<no> Norway</no>	
		<rs> Serbia</rs>	
	3.17	<si> Slovenia255</si>	5
4	Sum	mary and Outlook	9
List	of Fiç	gures27	1
List	of Ta	bles274	4

1 Introduction

Building typologies have proved to be a useful instrument for an in-depth understanding of the energy performance of certain building types and categories. In the framework of the IEE project TABULA, residential building typologies have been developed for 13 European countries following a common methodological structure. Each national typology consists of a classification scheme grouping buildings according to their size, age and further energy-relevant parameters, and a set of exemplary buildings representing the respective building types [IWU 2012a].

In the course of the IEE project EPISCOPE, 10 of these typologies have been further developed¹ and new typologies for 6 more countries² have been elaborated. In this context, the common typology scheme has been extended to additionally include showcase examples of new buildings meeting the national requirements or, as an alternative, more ambitious standards up to nearly zero-energy building (NZEB) level.

The recast of the Energy Performance of Buildings Directive in 2010 [EPBD 2010] stipulates that all new buildings constructed within the European Union after 2020 should reach nearly zero-energy levels. Thereby, a 'nearly zero-energy building' means a building that has a very high energy performance, [...]. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources produced on-site or nearby; (Article 2, No. 2.)

This ambitious commitment supports the radical cuts in greenhouse gas emissions highlighted by the IPCC's Fifth Assessment Report [IPCC 2014] as well as the long term targets of the European Union. With its "Roadmap for moving to a competitive low carbon economy in 2050" [COM 2011], the European Commission has looked beyond its short term objectives and set out a pathway for achieving deep emission cuts by the middle of the century. The Roadmap suggests that the European Union should prepare to cut its domestic emissions to 80 % below 1990 levels. Thereby, the 80 % reduction is just the minimum aim — the roadmap lays out plans to cut greenhouse gas emissions by up to 95 %. Energy efficiency is identified to be a key driver of the transition, and the built environment is supposed to provide low-cost and short term opportunities to reduce emissions — first and foremost through improvement of the energy performance of buildings.

It is expected that more than one quarter of the European 2050s building stock is still to be built [BPIE 2011]. Consequently, the effective implementation of nearly zero-energy buildings needs to be supported by providing guidance, common principles and quality checks of the concepts.

The inclusion of this standard in national residential building typologies aims to make a corresponding contribution by disseminating information and showcase examples in national "Building Typology Brochures" and online through the TABULA WebTool³. Referring to the appearance and details of actual existing buildings proves the feasibility of the concepts. Apart from being a source of information for house owners, the showcase examples can also be used in energy advice or energy certificate software as pre-defined datasets in order to show possible combinations of constructions and supply systems. Furthermore, they may be used by key actors to present the impact of policies and measures in an illustrative manner.

This report presents an overview of the current national minimum requirements, related national calculation methods, the status of the national NZEB definitions as well as information

¹ For the countries Austria, Belgium, Czech Republic, Denmark, Germany, France, Greece, Ireland, Italy, Slovenia have been developed further. This applies also to the associated EPISCOPE partner country Serbia.

² For the countries Cyprus, Spain, Great Britain/England, Hungary, The Netherlands, and Norway new residential typologies have been elaborated.

³ www.episcope.eu/communication/download/

on how these new built concepts were integrated in the national residential building typologies for the 17 participating countries. The overall objective is to enable an understanding of diverse energy-related approaches and requirements for new buildings in the residential sector in different countries and to learn from each other on how to develop successful energy saving strategies. A focus is placed on the energy consumption for space heating and domestic hot water.

TABULA

In most countries official NZEB definitions are not yet available. In the following chapters appropriate concepts were considered, which as far as possible refer to supposed future national approaches.

From a European point of view the harmonised approach provides a framework for crosscountry comparisons of residential NZEB concepts.

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[BPIE 2011]	BPIE (ed.) (2011): Principles for Nearly Zero Energy Buildings. Paving the way for effective implementation of policy requirements. Online available: http://www.bpie.eu/documents/BPIE/publications/H <u>R_NZEB%20study.pdf</u> [2014-05-12]	Study with the objective to contribute to a common and cross-national understanding on EU-wide NZEB definitions, the need for principles of sus- tainable, realistic nearly Zero-Energy Buildings as well as possible technical solutions and their implications.
[EPBD 2010]	Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Online available: <u>http://eur-lex.europa.eu/legal- content/EN/ALL/?uri=CELEX:32010L0031</u> [2014-05-15]	
[COM 2011]	Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (2011): A Roadmap for moving to a competitive low carbon economy in 2050. Brussels. Online available: <u>http://eur-lex.europa.eu/resource.html?uri=cellar:5db26ecc-ba4e-4de2-ae08-dba649109d18.0002.03/DOC_1&format=PDF</u>	The Roadmap is supposed to describe a cost- effective pathway to reach the EU's objective of cutting greenhouse gas emissions by 2050. It is meant to give direction to sectoral policies, na- tional and regional low-carbon strategies and long- term investments.
[IPCC 2014]	Intergovernmental Panel on Climate Change (ed.) (2014): Climate Change 2014: Mitigation of Cli- mate Change. <i>Contribution of Working Group III to</i> <i>the Fifth Assessment Report of the Intergovern-</i> <i>mental Panel on Climate Change</i> [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cam- bridge, United Kingdom and New York, NY, USA. Final Draft online available: http://mitigation2014.org/report/final- draft/background [2014-05-15]	The Working Group III contribution to the IPCC Fifth Assessment Report (WGIII AR5) provides a comprehensive assessment of relevant options for mitigating climate change through limiting or pre- venting greenhouse gas emissions, as well as activities that remove them from the atmosphere.
[IWU 2012a]	Loga, T./Diefenbach, N./Stein, B. (2012): Typology Approach for Building Stock Energy Assessment. Main Results of the TABULA project. Online avail- able: <u>http://episcope.eu/fileadmin/tabula/public/docs/rep</u> ort/TABULA_FinalReport.pdf [2014-04-08]	Final report of the IEE project TABULA

Table 1: Sources / References Introduction

2 Principles and Benchmarks for Nearly Zero-Energy Buildings

(by EPISCOPE partners BPIE & POLITO)

2.1 European Legislation

Europe's building stock accounts for approximately 40 % of the total primary energy consumption and 36 % of GHG emissions⁴. More than one quarter of the 2050s building stock is still to be built. To exploit the significant savings potential attributed to the building stock and fulfil the EU targets⁵, the energy consumption and related GHG emissions of those new buildings need to be close to zero.

During the last decades significant steps have been made towards improving the energy performance of the European building stock. The cornerstone was set in 2002 with the Energy Performance of Buildings Directive (EBPD), which introduced stipulations regarding the application of minimum requirements on new and existing buildings as well as the energy certification of buildings. As a next step and in order to *"lay down more concrete actions with a view to achieving the great unrealised potential for energy savings in buildings"*, in 2010 in the recast of the EPBD the term "nearly zero energy building" (nZEB) was introduced [EPBD 2010].

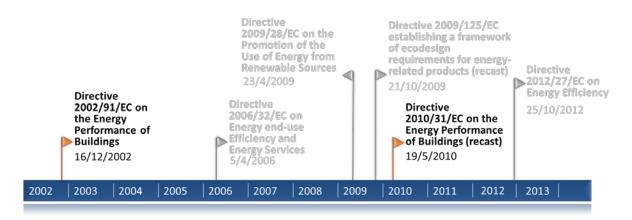


Figure 1: Key Directives related to buildings.

The Directive 2010/31/EC foresees that after 31 December 2020 all new buildings will be nZEB, while for public buildings the date is set on 31 December 2018 [ibidem]. Furthermore, the Member States (MS) shall draw up national plans for increasing the number of nZEBs. The national plans, which are the roadmaps for implementation of the national goals, introduce measures and financial incentives for the promotion of nZEBs. Moreover, the national plans shall include, inter alia, intermediate targets for improving the energy performance of new buildings by 2015. The EC shall by 31 December 2012 and every three years thereafter evaluate the MSs' progress in increasing the number of nZEBs and if necessary to propose measures towards this direction (see Figure 2).

⁴ Estimations based on Eurostat data, tsdpc320, tsdcc210

⁵ The European Union (EU) aims to reduce domestic greenhouse gas (GHG) emissions by 40 % by 2030 and 80 % by 2050 (compared to 1990 levels); A non-binding target for energy savings, proposed by the European Commission [COM (2014) 520], is 30 % by 2030.

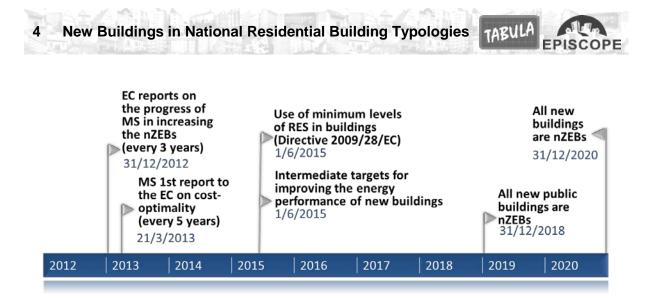


Figure 2: Key years for nearly zero energy buildings (Directive 2010/31/EC).

The EPBD recast (Art 9.6) specifies the extraordinary condition in which Member States may decide not to apply the nZEB requirements (i.e. the obligation to have all new buildings nearly Zero-Energy Buildings as from 2019/2021); This can only be justified for specific cases where the cost-benefit analysis over the economic lifecycle of the building in question is negative⁶.

The cost optimal levels

According to the EPBD Directive (2010/31/EC) Member States are required to "assure that minimum energy performance requirements for buildings or building units are set with a view to achieving cost optimal levels" (Art 4, EPBD). The MS need to also establish a comparative methodology framework for calculation cost-optimal levels (Art. 5 and Annex III). Besides the EPBD directive, the Commission provided additional legal documents on the cost optimality methodology. Those are the Commission's Cost-Optimal Delegated Regulation [COM 2012a] and the Guidelines [COM 2012b].

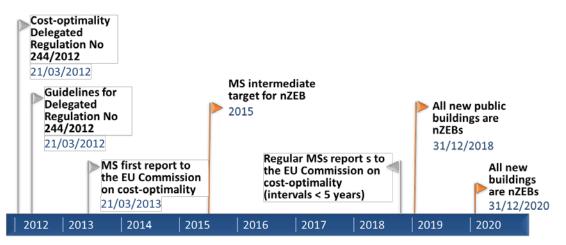


Figure 3: Timeline for implementation of the cost-optimal levels and nZEB requirements (Directive 2010/31/EC) [BPIE 2011].

⁶ However the cost-benefit analysis mentioned does not equal the cost-optimal requirements (Article 5, EPBD).

The EPBD requires MS to report on the comparison the existing minimum energy performance requirements with the calculated cost-optimal levels⁷. Additionally, Member States need to:

- define reference buildings (i.e. new and existing buildings; residential and non-residential) that are representative in terms of functionality and climate conditions.
- define energy efficiency measures and assess the final and primary energy need for the reference buildings.
- calculate the costs of the energy efficiency measures during the expected economic lifecycle⁸ of the reference buildings.

The deadline for submission of the first report on cost optimality to the Commission was set for March 21, 2013; MS need to report their level of energy requirements at regular intervals of maximum five years.

The cost optimal methodology is a suitable tool to facilitate a smooth transition towards nZEB⁹ (see: Figure 3). It could be used in the context of the definition of nearly Zero-Energy Building, but also to estimate the necessary support (subsidies) and market developments for the nZEB [BPIE 2011] (see also section 2.3).

Renewable Energy Systems - RES

TABULA

EPISCOPE

Additional requirements, related to nearly zero-energy buildings, were established within the Renewable Energy Directive [RED 2009]:

By 31 December 2014 Member States shall, in their building regulations require the use of minimum levels of energy from renewable sources in new buildings and in existing buildings that are subject to major renovation. Member States shall permit those minimum levels to be fulfilled, through district heating and cooling produced using a significant proportion of renewable energy sources. In establishing such measures, Member States may take into account national measures relating to substantial increases in energy efficiency and relating to cogeneration and to passive, low or zero-energy buildings (Art 13.4).

Definition of nZEBs according to EPBD

Nearly zero energy *buildings "have very high energy performance while the nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby".* This aforementioned definition of nZEBs, which is given in the recast of the [EPBD 2010] sets only a general description of the term. Despite this fact, the Directive clearly states that it is each MS's responsibility to define the term in national level taking into consideration their national, regional or local conditions. Additionally, each of the national definitions should include, inter alia, a numerical indicator of primary energy use expressed in kWh/m² per year, and energy needs for heating, cooling, ventilation and domestic hot water should be taken into account.

Based on the recast of the EPBD (Art.9) the national application of the definition of nZEB should be accompanied by national plans for increasing the number of nZEBs. By the end of

⁷ According to recital 14, EPBD, The discrepancy between the calculated cost-optimal level of national minimum energy performance requirements and the minimum energy performance requirements in force should not exceed 15 %.

⁸ Investment costs, maintenance and operating costs, earnings from energy produced and disposal costs (if applicable) need to be taken into consideration.

⁹ The energy performance of NZEB should, in principle, be better or equal to cost-optimal levels.

2012 (as stated in the first progress EC's report [EC 2013]) there were only 4 Member States with an official nZEB definition that contained both a numerical indicator of the primary energy and a share for renewable energy sources. To date the EC has received national plans¹⁰ for nZEBs from 18 MS¹¹, while in total for 24 MS the EC has published consolidated information¹⁰ on nZEBs (information coming from nZEBs national plans, NEEAP etc.). From the aforementioned countries only few of them assumed officially national approaches and nZEB national definitions (e.g. BE-Brx Region, DK, LT, SK). In most of the EU MS, the nZEB definitions are still under debate, while, on the other hand, there are 10 EU MS out of 28 which didn't report yet their nZEB plans and national definitions to the EU Commission (e.g. Czech Republic, Greece, Slovenia, Spain)".

Need for harmonisation at the EU level

Even though each MS has the flexibility to describe in its own way the nZEB, it would be very helpful if they followed a common approach for reporting the national definition and for drawing up the national plan for increasing the number of nZEBs. A harmonized European definition would facilitate not only the exchange of information and best practices among the MS but also the EC's evaluation progress. Towards this direction the EC asked CEN (Mandate M/480) to support the application of recast EPBD in the MS by developing standards.

The first mandate to CEN to develop a set of CEN EPBD standards (M 343) resulted in the successful publication of all EPBD related CEN standards in 2007-2008 (31 EN and 11 EN ISO standards).

The new mandate (M 480) came to review the mandate M 343 as the recast of the EPBD raises the need to revisit the standards and reformulate and add standards so that they become on the one hand unambiguous and compatible, and on the other hand a clear and explicit overview of the choices, boundary conditions and input data that need to be defined at national or regional level. Such national or regional choices remain necessary, due to differences in climate, culture & building tradition, policy and legal frameworks.

By 2016 a total revised and updated set will become available.

The first phase of the activity yielded the following products:

- FprEN 15603:2014 Over-Arching Standard + its Technical Report (FprCEN TR 15615);
- Fpr CEN /TS 16628: Technical Specification on Basic Principles + FprCEN/TS 16629 TS on Detailed Technical Rules;
- a software tool to support the checking of the calculation procedures given in the various standards and their interconnection.

Updating the standards to the needs of the EPBD recast included the following issues:

- more focus on models and input data which are suited to existing buildings;
- more focus on passive cooling techniques and for the assessment of the energy performance of cooling systems;
- expansion of the procedures to nearly zero energy buildings by way of renewable sources of energy, and procedures for energy producing buildings;
- more consideration given to alternative systems;
- integrated approach for calculating minimum performance requirements for technical building systems and building envelope taking into account all energy uses.

¹⁰ National nZEB reports to the EU Commission as well as Consolidated information from the Member States on Nearly Zero Energy Buildings are available at: <u>http://ec.europa.eu/energy/efficiency/buildings/implementation_en.htm</u>

¹¹ BE, BG, CY, DE, DK, FI, FR, HR, HU, IE, IT, LI, LU, NL, RO, SE, SK, UK

The assessment of the overall energy performance of a building is based on the holistic approach, that assumes integration and aggregation of all elements and energy services (see Figure 4).

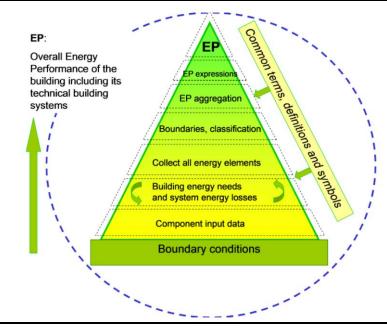


Figure 4: Holistic approach of the set of EPB-standards (source FprCEN/TS 16628:2014).

The overall energy balance of the building is defined by means of the assessment boundary, through which the energy can be imported or exported. The assessment boundary defines where the delivered and exported energy are evaluated.

Some of these energy flows can be quantified based on the meters (e.g. gas, electricity, district heating). For active solar, wind or water energy systems the incident solar radiation on solar panels or the kinetic energy of wind or water is not part of the energy balance of the building. Only the energy delivered by the generation devices, the auxiliary energy needed to supply the energy from the source (e.g. solar collector) to the building, and the thermal losses are taken into account in the energy balance.

The overall energy performance assessment of a building includes the following steps:

- 1) Specification of the building or building part for the energy performance assessment.
- 2) Categorization of spaces, including assessment of thermal envelope and simplifications.
- 3) Specification of the building services (e.g. heating, cooling, lighting, etc.) included in the energy performance.
- 4) Specification of the assessment boundaries.
- 5) Calculation or measurement of the energy flows at the assessment boundary.
- 6) Weighting of the energy flows according to primary energy factors or other metric (e.g. CO₂ emission). This is performed with controlling factors to allow including or excluding from the energy performance the effect of exported energy and of any compensation between energy carriers.
- 7) Aggregation to the energy performance and the renewable energy contribution

As shown in Figure 5, the delivered and exported energies can be classified according to the following perimeters: on-site; nearby; distant.

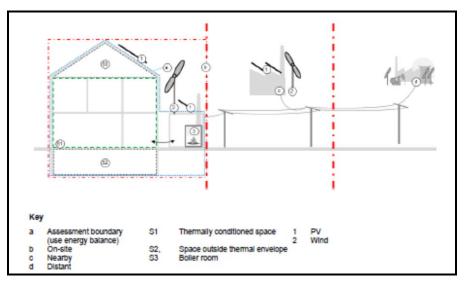


Figure 5: Perimeters and assessment boundaries (source FprEN 15603:2014).

Information on nearly Zero-Energy Building (nZEB) is given in annex G of FprEN 15603:2014, in which the following different requirements are combined to a coherent assessment of an nZEB:

- the building fabric (energy needs)
- the total primary energy use
- non-renewable primary energy use without compensation between energy carriers

Final nZEB rating is then based on a numerical indicator of non-renewable primary energy use with compensation.

2.2 nZEB Principles

The flexibility given to the MSs to define in their own way the nZEB requirements makes it difficult to find a common and harmonized nZEB definition across the EU. For that reason several studies and approaches have been published on this topic, i.e. [REHVA 2011], [RE-HVA 2013], [BPIE 2013a], [BPIE 2013b].

Technical definition – REHVA

A benchmarking study conducted in 2010 by REHVA revealed large variations in the technical regulations in different MSs [Seppänen/Goeders 2010], [REHVA 2011]. Realizing that these differences negatively affect the building industry and in an attempt to defining the nZEB in a uniform way, REHVA experts proposed a general definition format for the term nZEB. Hence, a nZEB is defined by *"technically and reasonably achievable national energy use of > 0 kWh/(m²a) but no more than a national limit value of non-renewable primary energy, achieved with a combination of best practice energy efficiency measures and renewable energy technologies which may or may not be cost optimal".* [REHVA 2013]

In the aforementioned definition the cost-effectiveness of the renewable energy technologies depends on the available national financial incentives, while the "reasonably achievable energy use" is defined in comparison with the national energy use benchmarks appropriate to the activities served by the buildings. For the definition it is necessary to clarify how on-site and nearby renewable energy production is included in the energy performance assessment and how primary energy factors should be used for the primary energy indicator calculation. Nevertheless, this definition takes into account local conditions and at the same time introduces a uniform methodology in all MSs.

nZEB Principles – BPIE

EPISCOPE

TABULA

A study published by BPIE introduces a set of principles that support MSs in setting a sustainable nZEB definition [BPIE 2011]. After analysing the financial, legal, environmental and technical challenges, the three basic principles set the basis for setting up a proper nZEB definition.

The first nZEB principle is related to the energy consumption of the buildings and how this is assessed. It is based on an assumption that *"there should be a clearly defined boundary in the energy flow related to the operation of the building that defines the energy quality of the energy demand with clear guidance on how to assess corresponding values"*. Therefore, it is recommended that in the nZEB definition a threshold for the maximum allowable energy need should be defined. This threshold should be between an upper limit which is defined by the cost optimal levels (Art. 5 EPBD) and a lower limit which can be determined considering the best available technology (BAT). Each MS should have the flexibility in elaborating the nZEB definition and in setting its own threshold within the aforementioned margins.

There are some good reasons for including electricity use for appliances (plug load) within the regulated energy demand (e.g. provision of indication on environmental impact). Thus, the definition should consist the electricity (energy) consumption of appliances for information purposes) including lighting for residential buildings.

The second nZEB principle results from the general definition set in the EPBD which foresees that in an nZEB the energy required should be covered to a very significant extent by renewable sources. Therefore, it has been concluded that *"there should be a clearly defined boundary in the energy flow related to the operation of the building where the share of renewable energy is calculated or measured with clear guidance on how to assess this share"*. Consequently, a threshold for the minimum share of renewable energy demand should be part of the nZEB definition. According to the nZEB definition from EPBD which stipulates that onsite and nearby renewables should cover 'to a significant extend' the remaining energy needs of the buildings, BPIE study concluded that this share should gradually increase from 2020 to 2050, with a reasonable corridor between 50 % and 90 %.

The third nZEB principle is related to the CO_2 emissions. Due to the fact that the other two principles don't necessarily ensure sufficient CO_2 savings "there should be a clearly defined boundary in the energy flow related to the operation of the building where the overarching primary energy demand and CO_2 emissions are calculated with clear guidance on how to assess these values". Consequently, in the nZEB definition a threshold for the overarching primary energy demand and CO_2 emission should be included. In the study the proposed range for CO_2 is between 0-3 kg/m² yr¹².

¹² Considering the proposed 90 % CO2 reduction in residential and services sectors from EU 2050 roadmap for a competitive and low-carbon economy and based on the following cacluation: a CO2 -emissions for the building sector of approximately 1.100 MtCO2 in 1990 (direct and indirect emissions for heating, domestic hot water and cooling purposes) and an estimated useful floor area evolution by 2050 up to 38 billion m² in 2050, the 90 % decrease of CO2 emissions would require an average CO2 -emissions of maximum 3 kgCO2/(m²yr).: 1,100MtCO2 x (100 %-90 %) / 38 billion m² = 2.89 kg/(m²yr).

10 New Buildings in National Residential Building Typologies TABULA

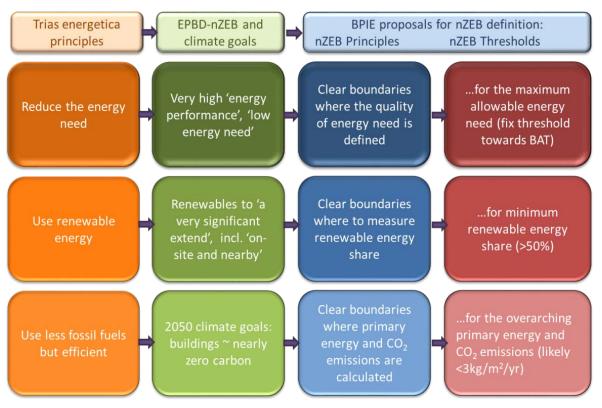


Figure 6: Towards a sustainable nZEB definition. [BPIE 2011]

2.3 Relation between cost optimality & nZEB

As previously mentioned there are significant relations between the cost optimal methodology and nZEB requirements. While the cost optimality is the scope of current framework of the building policy (both for renovation of existing and new buildings), the nZEB will be playing a significant role after 2020 (2018 for public buildings).

Relations between cost-optimally and nZEB requirements were analysed in number of studies, e. g. [BPIE 2013a], [Ecofys et al. 2013], [Madonna and Ravasio 2013]. Implementation of the cost optimal methodology nowadays allows identifying the gaps that need to be addressed for the successful implementation of the nZEB after 2020. The BPIE report highlights three types of potential gaps, as following (see also Figure 7):

- Financial gap, due to the difference of the actual cost;
- Energy performance gap, due to the difference in primary energy need;
- Environmental gap, due to the difference between associated CO₂ emissions to primary energy need of cost-optimal and nZEB levels, the latter aiming to nearly zero-carbon emissions (or <3kg CO₂/m²/yr) in order to be consistent with the 2050 decarbonisation goals of the EU.

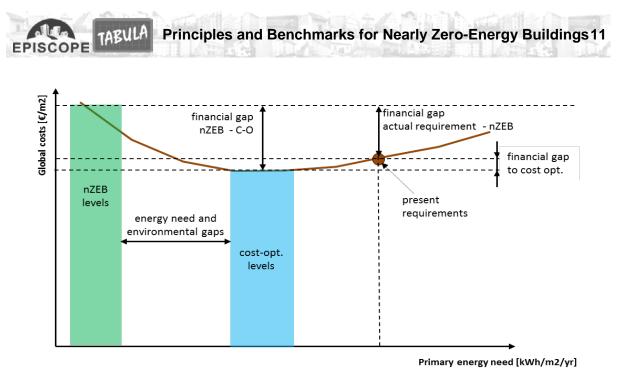


Figure 7: Example of financial, energy and environmental gaps between current and cost-optimal requirements and nZEB levels [BPIE 2013a]

This can be achieved by addressing the technology and installation costs. The market development of more energy efficient and renewable technologies and materials should be stimulated as this could lead to lowering the costs by 2020 [BPIE 2013a].

2.4 Sources / References

MADE

Sources / References Principles and Benchmarks for Nearly Zero-Energy Buildings Table 2:

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[BPIE 2011]	BPIE (ed.) (2011): Principles for Nearly Zero En- ergy Buildings. Paving the way for effective imple- mentation of policy requirements. Online available: <u>http://www.bpie.eu/documents/BPIE/publications/H</u> <u>R_NZEB%20study.pdf</u> [2014-05-12]	Study with the objective to contribute to a com- mon and cross-national understanding on EU- wide NZEB definitions, the need for principles of sustainable, realistic nearly Zero-Energy Buildings as well as possible technical solutions and their implications.
[BPIE 2013a]	BPIE (ed.) (2013): Implementing the Cost-Optimal Methodology in EU Countries. Lessons learned from three case studies. Online available: <u>http://bpie.eu/documents/BPIE/publications/cost_optimal_methodology/BPIE_Implementing_Cost_Optimality.pdf</u>	The study provides guidance on how to effectively implement the cost-optimal methodology at na- tional level. It evaluates the implications of differ- ent critical parameters, as well as to share the good practices across EU countries. In addition three practical case studies (i.e. Austria, Germany and Poland) were delivered.
[BPIE 2013b]	Atanasiu, B./ Kunkel, S./Kouloumpi, I. (ed.) (2013): nZEB criteria for typical single-family home renova- tions in various countries. Online available: <u>http://www.cohereno.eu/fileadmin/media/Dateien/C</u> <u>ohereno_Report_nZEB_Criteria.pdf</u>	COHERENO project deliverable The report introduces nZEB criteria for typical single family house renovation.
[COM (2014) 520]	Communication from the Commission to the Euro- pean Parliament and the Council. Energy Efficiency and its contribution to energy security and the 2030 Framework for climate and energy policy 23.07.2014. Online available: http://ec.europa.eu/energy/efficiency/events/doc/20 14_eec_communication_adopted.pdf [2014-08-05]	EC Communication
[COM 2012a]	Commission delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost-optimal levels of minimum energy performance requirements for buildings and building elements. Online available: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L: 2012:081:0018:0036:EN:PDF [2014-08-05]	EC Regulation
[COM 2012b]	European Commission guidelines accompanying Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Direc- tive 2010/31/EU) on the energy performance of buildings by establishing a comparative methodol- ogy framework for calculating cost-optimal levels of minimum energy performance requirements for buildings and building elements. Online available at: <u>http://eur-lex.europa.eu/legal- con-</u> tent/EN/TXT/HTML/?uri=CELEX:52012XC0419(02) &from=EN	EC guidelines
[EC 2013]	Report from the Commission to the European Parliament and the Council: Progress by Member States towards Nearly Zero-Energy Buildings. 2013. On line available: http://eur-lex.europa.eu/legal- con- tent/EN/ALL/;ELX_SESSIONID=xh0nT22LfLgcbqT 7VMthVXyzyB0QJJQ23Ryt29nhZkKmGpBhQTGQ! 1575695567?uri=CELEX:52013DC0483R(01)	Report introduces an overview on MS practical definition of NZEBs within the scope of EPBD. The analysis was based on the results of MS progress reports on nZEBs.

EPISCOPE TABULA Principles and Benchmarks for Nearly Zero-Energy Buildings 13

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[Ecofys et al. 2013]	Ecofys/Politecnico die Milano/University of Wupper- tal (2013): Towards nearly zero-energy buildings: Definition of common principles under the EPBD, by order of the European Commission <u>http://ec.europa.eu/energy/efficiency/buildings/doc/</u> <u>nzeb_full_report.pdf</u> [2014-08-05]	The study gives guidance to the MSs on how to interpret the requirements for nearly zero energy buildings. It evaluates the adequacy of measures and activities reported by MS in their national plans on nearly zero energy buildings. Moreover it links cost optimality and the nearly zero energy buildings principle in a consistent way and facili- tate their convergence until 2021.
[EPBD 2010]	Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Online available: <u>http://eur-lex.europa.eu/legal-</u> <u>content/EN/ALL/?uri=CELEX:32010L0031</u> [2014-05-15]	
[Madonna and Ravasio 2013]	Madonna F. and Ravasio F. (2013) Definition of nearly zero energy building and cost-optimal en- ergy performance in 2020, ECEEE Summer Study Proceedings 2013 (5b-315-13).	In the article presents the methodological frame- work to derive the cost-optimality levels, i.e. the energy performance, in terms of primary energy, leading to minimum life cycle cost. The levels are benchmarks for nZEB definition.
[RED 2009]	Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promo- tion of the use of energy from renewable sources and amending and subsequently repealing Direc- tives 2001/77/EC and 2003/30/EC (Text with EEA relevance) <u>http://eur-lex.europa.eu/legal- content/EN/TXT/?uri=CELEX:32009L0028</u> [2014- 08-05]	
[REHVA 2011]	Kurtnitski, J. (ed.) (2011): How to define nearly net zero energy buildings nZEB – REHVA proposal for uniformed national implementation of EPBD recast. Available at: <u>http://www.rehva.eu/publications-and-</u> <u>resources/hvac-journal/2011/032011/how-to-define- nearly-net-zero-energy-buildings-nzeb/</u>	Report proposes the technical definitions and energy calculation principles for nearly zero en- ergy buildings. The intention of the report was to help the experts in the Member States define the nearly zero energy buildings in a uniform way.
[REHVA 2013]	REHVA 2013: Technical definition for nearly zero energy buildings. Online available: <u>http://www.rehva.eu/fileadmin/REHVA_Journal/RE</u> <u>HVA_Journal_2013/RJ_issue_3/22-</u> <u>28_nZEB_RJ1303_web.pdf</u>	This report is a revised version of 2011 report. It was prepared in cooperation with European standardization organization CEN. Report presents the technical definitions and energy calculation principles for nearly zero energy buildings.
[Seppänen/ Goeders 2010]	Seppänen O, Goeders G (2010): Benchmarking regulations on energy efficiency of buildings. Ex- ecutive summary. REHVA Federation of European Heating, Ventilation and Air-conditioning Associa- tions, 5 May 2010	Executive summary of the benchmarking study conducted on the technical regulations for building in different MSs.

TABUL

PISCOPE

In the following subchapters, the inclusion of different energy performance levels for new buildings in national residential building typologies is described for each of the participating countries. Apart from the current national requirements for new buildings, the status of the national NZEB definition and the calculation method to comply with the building regulations are explained.

Furthermore, the classification schemes of national building typologies are displayed, and the integration of example buildings to demonstrate current national requirements for new buildings, an improved and the (assumed¹³) NZEB standard is discussed and illustrated by the description of one example building from each country. For this example also the national building display sheet is shown which is included in the respective national typology brochures the project partners have elaborated.¹⁴

Results of energy balance calculations are shown with regards to the national calculation procedures as well as to the TABULA scheme. This commonly used calculation method has been evolved in the framework of the IEE funded project TABULA in order to make energy performance data comparable between different countries. It has been further developed in the framework of the EPISCOPE project and is now e.g. including the assessment of on-site electricity production by CHP and PV systems.

A focus is placed on the energy consumption for space heating and hot water. Moreover, the present report considers calculated energy demands only, since the building variants are case studies and have not necessarily been exactly constructed in the way displayed here. In general, these values may differ from actual consumptions in a greater or lesser extent.

¹³ For several countries no official definitions of nearly zero-energy buildings have been published so far. In these cases, the considerations are based on an energy performance level that is assumed to comply with the NZEB approach.

¹⁴ Example display sheets as well as the national building typology brochures can be downloaded from the project website: <u>http://episcope.eu</u>

3.1 <AT> Austria

(by EPISCOPE partner AEA)

In Austria the reduction of the energy consumption in the building sector is one of the important goals of the energy strategy. There has been considerable number of measures implemented for space heating reduction since 1990 [AEA, 2013]. The implemented U-values for the construction elements (envelope insulation and windows) defined in the building regulations for example reflect these efforts.

In 1996 the first Passive-single family house was already built in Vorarlberg (Austria). This was followed by multifamily buildings, apartment buildings, schools and office buildings. During the period of 2005-07 the first renovation of a public building with Passive house components was completed. In 2009, Austria is the country with the most built Passive houses density [Lang, 2010].

There are subsidy programmes on regional and national level for both new buildings and renovation activities [KPC, 2014] relating to energy saving measures also for the use of renewable energy and changing the heating system into an ecological system.

In 2004, the Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW) initiated a special programme for new buildings and renovation (klimaaktiv: Bauen & Sanieren) to promote the reduction of energy consumption in the building sector. In 2012, 312,000 m² of dwelling area built, were declared according to the criteria of klimaaktiv which is more than double than the area in 2011 [klimaaktiv, 2014]. The criterion for the klimaaktiv certification is more stringent than the criterion for nearly zero-energy buildings (nZEBs), defined in the national plan for the year 2020 and are in three certification categories: Gold, Silber and Bronze (Minimum).

Nearly zero-energy buildings (nZEBs) have been defined in the national plan 2020 (tightened in two year steps: 2014, 2016, 2018 and 2020) and the negotiations with the Austrian Provinces (Länder) are completed [OIB, 2014a]. The implementation in the building regulations in the Provinces (Länder) are expected in 2015.

3.1.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Austria

There is no central (national) building regulation in Austria. Each Austrian province (Land) has its own building regulation but in 2008 the fundamental technical regulations in most of the provinces "Länder" were revised and harmonized.

Since the energy crisis in 1973, there has been a gradual implementation of technical regulations on thermal specifications. In Vienna, for example, in 1976 the first thermal regulation on the building envelope was executed.

For the time being, the regulations on thermal aspects of the building according to the OIB¹⁵ (Austrian Institute of Construction Engineering)-directive 2011 have been accepted by all of the Austrian provinces [OIB, 2014a]. The current thermal and energy requirements are for both new and major renovation.

¹⁵ OIB stands for "Österreichisches Institut für Bautechnik": Austrian Institute of Construction Engineering

Minimum requirements for new residential buildings in Austria

The OIB-2011 guidelines 6 on energy saving and thermal insulation, includes the complete description of minimum requirements on building components and parameters such as U-values and supply system type and quality. It also includes the requirements of space heating demand, final and primary energy demand and CO_2 -emissions. The layout of energy performance certificate is also specified in this guideline [OIB, 2011].

The energy performance requirements of the buildings are planned to be tightened step by step. The requirements define maximum limit of the primary energy demand, of CO_2 -emissions and total energy efficiency factor. This can be reached either by improving the thermal envelope or improvement of the heating and domestic hot water supply (See picture in the next section).

In the revised version of OIB guidelines [OIB 2014b], at least 15 % of the primary energy demand should be provided by renewable sources.

Austrian calculation method to comply with new building regulations for residential buildings

As already mentioned, the layout of the EPC for residential and non-residential buildings is described in the OIB guidelines ([OIB, 2011] and revised in [OIB, 2014b]). The calculation method of the EPC is defined in an attachment to the guidelines in form of a handbook on energy performance of buildings. The calculations are based on the different ÖNORMs (Austrian standards and regulations):

Wärmeschutz im Hochbau - Niedrig- und Niedrigstenergie-Gebäude - Teil 5: Anforderungen und Nachweisverfahren	ÖNORM 8110-5	В
Thermal protection in building construction - Low and lowest energy build- ings - Part 5: Requirements and reference methods		
Wärmeschutz im Hochbau - Teil 6: Grundlagen und Nachweisverfahren - Heizwärmebedarf und Kühlbedarf	ÖNORM 8110-6 ¹⁶	В
Thermal insulation in building construction - Part 6: Principles and verifica- tion methods - Heating demand and cooling demand		
Gesamtenergieeffizienz von Gebäuden - Begleitende Dokumente zum Energieausweis - Befund, Gutachten, Ratschläge und Empfehlungen	ÖNORM 5055	Н
Energy performance of buildings - Documents relating to the energy cer- tificate - Findings, expertise, advice and recommendations		
Gesamtenergieeffizienz von Gebäuden - Heiztechnik-Energiebedarf Energy performance of buildings - Energy use for heating systems	ÖNORM 505616	Н
Gesamtenergieeffizienz von Gebäuden - Raumlufttechnik-Energiebedarf für Wohn- und Nichtwohngebäude	ÖNORM 5057	Н
Energy performance of buildings - Energy use for ventilation systems of residential and non-residential buildings		
Gesamtenergieeffizienz von Gebäuden - Kühltechnik-Energiebedarf Energy performance of buildings - Energy use for cooling systems	ÖNORM 5058	Н
Gesamtenergieeffizienz von Gebäuden - Beleuchtungsenergiebedarf Energy performance of buildings — Energy use for lighting	ÖNORM 5059	н
Energy performance of buildings — Energy use for lighting	0000	

¹⁶ In August 2014, updated versions of the 2 ÖNORMs have been published: ÖNORM B 8110-6 and ÖNORM H 5056.

Status of NZEB definition for residential buildings in Austria

The concept of the Nearly Zero-Energy Building (nZEB) in the national plan is composed in a document by the OIB- Austrian Institute of Construction Engineering [OIB, 2014a]. The concept is based on article 9 of the Energy Performance of Buildings Directive (EPBD) 2010 (2010/31/EU) and defines the minimum requirements of the complete energy efficiency of the buildings.

The requirements of the nZEB 2020 are defined in four indicators:

- Heating energy demand: Heizwärmebedarf (HWB)
- Primary energy demand: Primärenergiebedarf (PEB)
- CO₂ emissions: CO₂-Emissionen (CO₂)
- Total energy efficiency factor called 'Gesamtenergieeffizienz-Faktor (f_{GEE})'

It has to be mentioned that the electricity demand for both residential and non-residential buildings is being considered in the primary energy demand including the electricity for lightning, heating, cooling, ventilation and domestic hot water (Haushaltstrombedarf HHSB or household electricity demand is included in final energy demand).

In the table below, the maximum space heating demand (HWB), final energy demand (EEB), total energy efficiency factor (f_{GEE}), primary energy demand (PEB) and CO₂-emissions (CO₂) are defined for new buildings.

HTEB in the tables below stands for Heiztechnik-Energiebedarf or energy use for heating systems. The abbreviation I_c stands for 'charakteristische Gebäudelänge' or characteristic length of the building (the relation of the volume of the building to its envelope: V/A).¹⁷

The current calculation method for new residential buildings, according to the building regulations requirements and special aspects of nZEB definition in Austria can be seen in the table below:

	HWBmax	EEBmax	fg EE max	PEBmax	CO2 _{max}	
	[kWh/m²a]	[kW h/m²a]	E]	[k₩ h/m² a]	[kg/m²a]	
2014	16 × (1 +3,0 / l _o)	mittels HTEB _{Ref}	0,90	190	30	
	14 × (1 +3,0 / l _c)	mittels HTEB _{Ref}				
2016		180	28			
	16 × (1 +3,0 / 🕼		0,85			
	12 × (1 +3,0 / l _c)	mittels HTEB _{Ref}				
2018		oder		170	26	
	16 × (1 +3,0 / l _c)		0,80			
	$10 \times (1 + 3, 0 / l_{c})$	mittels HTEB _{Ref}				
2020		oder		160	24	
	16 × (1 +3,0 / ‰)		0,75			

 Table 3:
 Extract from the Austrian national plan for new buildings [OIB, 2014a]

In the table, there are two variations defined per year: one variation through improvement of the building envelope (top row) with a standard energy system and the second one through more energy efficient heating system (lower row) and lower requirements for the building envelope.

¹⁷ For example: if the relation of the envelope of a building to its volume is 2, the space heating demand for the nZEB 2020 would be for the first version 10 x (1 + 3/2) = 25 kWh/m²a and for the second version 16 x (1+3/2) = 40kWh/m²a. For the second version the f_{GEE} needs to be under 0.75.

Table 4: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB definition in Austria

Е

			C	alculatio	n Me	etho	a New	Building F	regulation	s – (part 1)	
Cou	ntry	AT	Αι	ustria						Status	06/2014
National Requirements for New Residential Buildings									Special Aspects with regard to the Austrian NZEB Definition		
Legislation / Standards Provincial or governmental building codes based on OIB (Austrian Institute of Con- struction Engineering)-directive 2011 [OIB, 2011]								The building regulation is not central. The Austrian Federal Governments (Länder) have each its own regulation			
Heatir	ng demand ÖNORI	and co M B 81	oling 10-6		eizwä	ärmeb		d Kühlbedarf)		A draft of revised OIE been published in Ju 2014b].	
lufttec	hnik-Energ ÖNORI	iebeda M H 50	rf für 57	Wohn- und	Nicht	twohng	gebäude		ngs (Raum-		
-	ÖNORI	M H 50	56	ms (Heiztec ms (Kühltec		-					
-	ÖNORI	M H 50	58	uchtungsen		_					
0	ÖNOR	M H 50	59	Ŭ	Ũ			und Nachweis	sverfahren):		
1	ÖNORI	M B 81	10-5			2,001					
The ca	ngs (OIB) D	nethod	is de					performance ns of the provi			
Ener	gy Servi	ces								No deviations.	
x	Heating		х	DHW	х	Appli	ances				
х	Cooling		х	Auxiliary		Othe	r:				
х	Ventilatio		х	Lighting							
Install		syster	ms a	re rare in A energy hous		a but	installing	g ventilation s	systems are		
Calc	ulation F	Proce	dur	e			Cal	culation period	k	No deviations.	
x	Calculati (building)		nerg	y need for h	eating	g		month/ye	ear		
x	Calculati	on of d	elive	red energy (syste	em)		month	Ì		
Expla	nation / Co	ommer	nts								
Cons	sideratio	n of S	Spe	cial Tech	nolo	ogies	i			On-site electricity pro been added to EPC	
Therm	nal Systems									of June 2014 [OIB, 2	
х		,		ith heat reco	overy						
х	Thermals										
Other special systems:											
On-Site Electricity Production Feed-in Self-use ¹ to determine considere						Self-use considered for H-C-W-HE ¹					
	On-site CHP										
x	On-site P	٧				x	x	month	HE		
	Other ene	ergy ge	enera	tion system	s:						
								covered by the pre Household Electric			
Expla	nation / Co	ommer	nts								

Calculation Method New Building Regulations – (part 2)									
Cour	ntry	AT	Austria				Status	06/2014	
Natio	onal Re	quiren	nents for New	Special Aspects with National NZEB Definit					
Туре	of Red	quirem	ents (new buil		According to the draft of	0			
x	U-value	es of buil	ding elements		Primary		line 6 from June 2014 [OIB, 2014b], apart from a fixed maximum value for		
	Heat transfer coefficient by transmission				energy		the primary energy demand a minimum 15% of the primary energy demand		
x	Energy	need for	r heating		Carbon di	oxide emissions	should be renewable. Also fixed value requirements for CO ₂ emissions and the complete energy		
х	Deliver	ed energ	IY		Other:				
In som	nation / (ne provine of the EP	ces, a te	nts nant behaviour facto	efficiency factor (f _{GEE}); f _{GEE} is considered in nZ tion with other features	EB in combina-				

<AT> Austria

Assessment of energy carriers in Austria

In the Austrian energy performance certificate, the primary energy demand for energy derived from renewable and non-renewable energy sources are indicated. The primary energy demand is calculated according to the Austrian standards (see previous chapter) considering the auxiliary energy demand of the lightning, heating/cooling system, ventilation system, and domestic hot water. The primary energy factors are foreseen in the Austrian standards concerning the energy carriers in the table below.

Table 5: Austrian primary energy factors

Label / type of factor	Total Primary Energy Factor	Non-Renewable Primary Energy Factor		
used for EPC rating	x	x		
used for building regulations requirements	*	*		
Label (national language)	Primärenergiebedarf	Primärenergiebedarf nicht erneuerbar		
Description / type of weighting factor	non-renewable + renewable energy amounts, includes upstream energy ex- penditures (transportation, transformation) beyond national boundary	non-renewable energy amounts, includes upstream energy expenditures (transporta- tion, transformation) beyond national boundary		
Reference	[OIB, 2011]**	[OIB, 2011]**		
Factor is multiplied by delivered energy based on the	net calorific value*	net calorific value		
Natural gas	1.17	1.17		
Heating oil	1.23	1.23		
Biomass	1.08	0.06		
Electricity	2.62	2.15		
District heating	1.52	1.38		
District heating with 100 % CHP	0.92	0.20		

*) According to [OIB, 2011] the primary energy demand is only used for EPC rating. In June 2014 a draft of the new OIB guideline 6 has been published in which requirements of the primary energy demand are included and which defines a minimum share of renewable primary energy of 15 % with regards to the total primary energy demand.

**) ÖNORM EN 15603, 2008

As mentioned before, there are two variations defined to reach the Austrian nZEB requirements:

- a) improvement of the building envelope (minimum space heating demand formula)
- b) more energy efficient heating system (a combination of the minimum space heating demand (formula) and the minimum total energy efficiency factor)

In both cases the minimum value for the primary energy demand and CO_2 -emission are indicated.

The energy produced by the photovoltaic is exported mainly into the electricity grid (there are exceptions). It will be stated in the EPC of the building in the energy balance (a draft was published in June 2014 [OIB, 2014b]).

3.1.2 Integration of National Requirements for New Buildings and NZEB Standards in the Austrian Residential Building Typology

The building typology developed in the TABULA/EPISCOPE project is the first comprehensive typology concerning all type of residential buildings starting with single family home to apartment buildings. The first building typology developed in the TABULA project has been used by research institutions and universities. It has supported some of Austrian provinces (Länder) to adapt their climate protection strategies accordingly.

Classification scheme for the Austrian residential building stock ("Building Type Matrix")

During the IEE Project EPISCOPE, the building type matrix developed in TABULA project was extended towards new buildings, reflecting the current legal requirements [OIB, 2011]. The picture below shows the respective matrix. Four further examples buildings have been identified which are now used for show calculations reflecting possible practical implementations of new buildings requirements according to the national minimum requirements, klima-aktiv certification and future nZEB standards.

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	national (Gesamt- Österreich)	1919	generic (Standard / allgemein typisch)	AT.N.SFH.01.Gen	AT.N.TH.01.Gen	AT.N.MFH.01.Gen	AT.N.AB.01.Gen
2	national (Gesamt- Österreich)	1919 1944	generic (Standard / allgemein typisch)	AT.N.SFH.02.Gen	AT.N.TH.02.Gen	AT.N.MFH.02.Gen	AT.N.AB.02.Gen
3	national (Gesamt- Österreich)	1945 1960	generic (Standard / allgemein typisch)	AT. N. SFH. 03. Gen	AT.N. TH.03. Gen	AT.N.MFH.03.Gen	AT. N. AB. 03. Gen
4	national (Gesamt- Österreich)	1961 1980	generic (Standard / allgemein typisch)	AT.N. SFH. 04. Gen	AT.N.TH.04.Gen	AT.N.MFH.04.Gen	AT.N.AB.04.Gen
5	national (Gesamt- Österreich)	1981 1990	generic (Standard / allgemein typisch)	AT.N. SFH.05. Gen	AT.N.TH.05.Gen	AT.N.MFH.05.Gen	AT.N.AB.05. Gen
6	national (Gesamt- Österreich)	1991 2000	generic (Standard / allgemein typisch)	AT.N. SFH. 06. Gen	AT.N.TH.06.Gen	AT.N.MFH.06.Gen	AT.N.AB.06. Gen
7	national (Gesamt- Österreich)	2001 2009	generic (Standard / allgemein typisch)	AT.N.SFH.07.Gen	AT.N.TH.07.Gen	AT.N.MFH.07.Gen	AT.N.AB.07.Gen
8	national (Gesamt- Österreich)	2010	generic (Standard / allgemein typisch)	AT.N.SFH.08.Gen	AT.N.TH.08.Gen	AT.N.MFH.08.Gen	AT.N.AB.08.Gen

Figure 8: Classification scheme ("Building Type Matrix") of the Austrian residential building typology [AEA, 2014], now extended towards new buildings

		SFH TH MFH		AB		
		Single-Family House	Terraced House	Multi-Family House	Apartment Block	
		AT.N. SFH. 08. Gen	AT.N.TH.08.Gen	AT. N.MFH. 08. Gen	AT.N.AB.08.Gen	
Number of dwellings		1	1	4	25	
Number of full storeys (conditioned)		2	2	4	4	
Number of directly attached neighbour buildings		0	2	0	0	
National reference area (Buttogrundfläche / gross floor area based on EPC)	m²	192	142	274	1133	
TABULA reference area (conditioned floor area, internal dimensions)	m²	153	113	219	906	

Table 6: Exemplary new buildings representing the latest construction year classes (2010 ...)

Building example: variants meeting three energy performance levels for new buildings

For all four categories of new buildings three different standards beside the current standard have been compared: klimaaktiv [klimaaktiv, 2013] basic standard (Bronze), and two variations of the national plan standards. A multifamily house has been chosen to show the different model cases. The table below shows the building features for these energy performance levels.

Energy Performance levels

• "OIB-guidelines 6, 2011" (Mindestanforderung OIB-Richtlinie 6, 2011)

Combination of building and supply system that exactly complies with the current minimum requirements Building VII: current standard

• "klimaaktiv minimum criteria" (according to the minimum criteria for the certification as klimaaktiv building 2013)

Combination of building's thermal insulation, construction material and supply system: Building VIII (in table below has been shown as ka). For the gold certification of klimaaktiv, a short indication of heating demand has been also presented on the sheets.

- National Plan on Nearly Zero-Energy Buildings
 - "10 x (1 + 3.0 / l_c)" OIB-Document on national plan with better thermal insulation (in table below has been shown as 10)
 - "16 x (1 + 3.0 / I_c)" OIB-Document on national plan with supply system with less CO₂emissions (in table below has been shown as 16)

AT. N.MFH.08.Gen		OIB RL6, 2011	ka	10	16
Energy Perfo	ormance Level	Current Minimum Requirement	Minimum standard	Improved thermal enve- lope/ NZEB	Improved supply system / NZEB
U-values					
Roof	W/(m²K)	0.2*	0.08	0.1	0.17
Wall	W/(m²K)	0.35*	0.1	0.1	0.16
Window	W/(m²K)	1.4*	0.7	0.8	1.1
Door	W/(m²K)	1.7*	0.7	0.8	1.1
Floor	W/(m²K)	0.4*	0.1	0.2	0.2
Thermal bridging supplement (whole enve- lope)		10.57	6.98	8.29	10.37
CO ₂ emissio	ns **kg/(m²a)	< 30	< 12	< 24	< 24
Primary ener	gy **W/(m²K)	< 160	< 135	< 160	< 160
Heat Supply	System				
Heat generator		District Heating	District Heating	District Heating	District Heating Ventilation system with heat recovery
Thermal so	lar system	-	-	-	DHW
		num requirements of the C	DIB-quidelines		DIIW

*These U-values are the minimum requirements of the OIB-guidelines ** The type of heating system is reflected in primary energy and CO₂-emission balance and these is the parameter considered in the NZEB Buildings

In the new version of the Austrian "Building Typology Brochure" [AEA, 2014] the three variants of the new buildings are displayed next to each other on a double page: left the klimaaktiv minimum criteria and right top the nZEB 10 x (1 + $3.0 / I_c$) (better thermal insulation) and right bottom nZEB 16 x (1 + $3.0 / I_c$) (better energy efficient supply system). These "Building Display Sheets" have been developed during the IEE project TABULA and have been modified to represent the three variations of new buildings as explained above.

Е

YMBOL	BILD	DATEN			HWB		10 × (1 + 3,0 / Ic)						
		GEBÄUDEKATEGORIE	MFH VIII	A++	-	ka gold 10 kWh/m²a	GEBÄUDEHÜLLE	BESCHREIBUNG		U-WERT		HWB	
		BAUALTERSKLASSE	2014-20	A+		24 kWh/m²a	DE			[W/m ² K]	A++		
1	In	BRUTTO-GRUNDFLÄCHE	274 m²	в		24 kwn/m•a		Dämmung 36 cm		· · · ·			29 kWh/r
	III I I I I I I I	GEBÄUDEVOLUMEN	875 m³	c D			AW	Dämmung 34 cm		0,10	•		
		GEBÄUDEUMRISS	17 x 13 m	E			FE	Fenster Isoli erver	glasung	0,80			
		WE/GESCHOSSE	2/4	F			KD	Dämmung 16 cm		0,21	G		
		WE/GESCHOUSE	2/4				GEBÄUDETECHNIK	BESCHREIBUNG			ENERGIETRÄGER		HT
UBAU	KONSTRUKTIONEN							Raumheizung geh	äudezentral, Fernwär	meanschluss			[kWh/
		e Hochlochziegel, Leichtbetonstei nsteine, mehrschalige Mauerwer				on-	RH	Wärmeverteilleit		meenschiuss,	Fernwärme		З,
arren assivt	Geschoßdecke/ Dach ge dach, Flachdach als Wa etondecke; Fenster: wär	dämmt: Ziegel- Hohlkör perdecke, rmdach oder Umkehrdach; Keller megedämmter Rahmen, 2-3 Schei	Massivbetond decke/erdberü	ecke, Fertigteildeck hrter Fußboden geo hutzverglasung, Pa	e, Holzbal kendecke lämmt: Hohlkörper si vhausfens ter	decke,	ww		är meber eitstel lungss Värmeverteill eitunger r		Fernwärme		30
BÂUD	EHÜLLE	BESCHREIBUNG		BAUTEILFLÄCHE [m²]	DÄMMSTÄRKE [cm]	U- WERT [W/m ² K]							
	-	Sparrendach, Dämmung		130,0	46	0,08	16 x (1 + 3,0 / I c)						
							GEBÄUDEHÜLLE	BESCHREIBUNG		U-WERT [W/m ² K]	A++	HWB	
							DF	Dämmung 20 cm		0,17	A+		
)				-	-	-	AW	Dämmung 20 cm		0,16			29 k Wh/r
							FE	Fenster Isoli erver	glasung	1,10	0		
v		Brettstapel-Außenwand, hinter	lüftet	302,3	34	0,10	KD	Dämmung 16 cm		0,21	e F G		
							GEBÄUDETECHNIK	BESCHREIBUNG			ENERGIETRÄGER		HT [kWh/
		Kunststofffenster Wärmeschut	zverglasung	42,5		0,70	RH	Wärmeverteilleit	äudezentral, Fernwär ungen gedämmt, Mech irmerückg ewinnung		Fernwärme		3,
, ,		Fertigtei Idecke, Wärmedämmu	ing	130,0	32	0.10	ww	gebäudezentral, V	är meber eitstel lungss Värmeverte ill eitunger r, Unter stützung dur cl	ngedämmt, indirekt	Fernwärme		9
	AMANA AMA								,				
9ÄLID	ETECHNIK	BESCHREIBUNG		BAUJAHR	ENERGIETRÄGER	НТЕВ		f GEE Gesamt-	PEB Primär-	C02		EB End-	
0.400	LIECHNIK .	beserinerboild		baoam	ENERGIETRAGEN	[kWh /m²a]		Energieeffizienz	Energiebedarf	Emissionen	E	nergiebedarf	
		Raumheizung gebäudezentral, Fer nwär meanschluss, Wär meverteill eitung en gedämi	mt		Fernwärme	3,8	klimaaktiv	Faktor 0,84	[kW h/ (m²a)]	[kg/m²a]		kWh/ (m²a)]	
		Kombiniert mit					10 × (1 + 3,0 / Ic)	0,89					
							16 x (1 + 3,0 / Ic)	0.70					
ww		Wärmebereitstellungssystem, Raumheizung gebäudezentral,			Fernwärme	30,7	10, (1 · 5,0) (0)	6,70		-			

Figure 9: "Building Display Sheet" of the exemplary MFH <AT> [AEA, 2014]

<AT> Austria

Table 8: Exemplary MFH – Results of the energy balance calculation; Procedure: OIB Guidelines 6, 2011

Variant N°					
Label of the variant		OIB RL6, 2011	klimaaktiv	NZEB	NZEB
Variation level		Minimum Requirement	minimum	VAR 10	VAR 16
Energy standard		2011	2013	2020	2020
Calculation method					
Total energy efficiency factor f_{GEE}		1.01	0.84	0.89	0.7
Energy need for heating	kWh/(m²a)	41	24	29	30
Delivered energy		DH	DH	DH	DH
Fossil fuels	kWh/(m²a)	61.5	56.7	58.1	55.8
Renewable fuels	kWh/(m²a)	76.7	61.9	66.3	51.6
Electricity	kWh/(m²a)	16.4	16.4	16.4	16.4
CO2-Emissions	kg/(m²a)	15.1	13.5	14	12.8
End energy demand	kWh/(m²a)	113.4	92.8	98.9	78.7
Primary energy demand	kWh/(m²a)	138.2	118.6	124.4	107.3

TABULA calculation results for all exemplary buildings

Table 9 shows the results of the TABULA/EPISCOPE calculation procedure (standard calculation, not adapted) for all four exemplary building categories.

The minimum requirements in the table are the requirements of the buildings according to the OIB 2011 guidelines 6 for the buildings build in 2014. The improved standard in the table shows the values according to the klimaaktiv minimum standards. For ambitious standard in the table the requirements of nZEB national plan 2020 variant 10 (with better thermal insulation) has been chosen.

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum Requirement	1.39	135	29	106	114	10	27	0	0	0	164	4	0	0	0
A LAN	02	Improved Standard / ka	0.56	67	0	67	70	10	27	0	0	0	0	1	83	0	0
AT.N.SFH.08.Gen ReEx.001	03	Ambitious Stan- dard / NZEB (10)	0.68	81	0	81	84	10	27	0	0	0	0	1	97	0	0
TH	01	Minimum Requirement	1.09	114	29	85	93	10	27	0	0	0	136	4	0	0	0
	02	Improved Standard / ka	0.52	70	0	70	73	10	27	0	0	0	0	1	86	0	0
AT.N.TH.08.Gen ReEx.001	03	Ambitious Stan- dard / NZEB (10)	0.52	72	0	72	76	10	27	0	0	0	0	1	88	0	0
MFH	01	Minimum Requirement	1.31	142	0	142	145	15	32	0	0	0	0	1	162	0	0
The second secon	02	Improved Standard / ka	0.55	72	0	72	75	15	32	0	0	0	0	1	90	0	0
AT.N.MFH.08.Gen ReEx.001	03	Ambitious Stan- dard / NZEB (10)	0.64	84	0	84	87	15	32	0	0	0	0	1	102	0	0
AB	01	Minimum Requirement	1.04	112	0	112	116	15	32	0	0	0	0	1	131	0	0
	02	Improved Standard / ka	0.52	64	0	64	67	15	32	0	0	0	0	1	82	0	0
AT.N.AB.08.Gen ReEx.001	03	Ambitious Stan- dard / NZEB (10)	0.59	75	0	75	79	15	32	0	0	0	0	1	93	0	0
		ties (TABULA Data															
h_Transmission		W/(m ² K) floor area			er coeffi	cient by	transmis	ision / in	dicator fo	or energ	y quality	of buildi	ng envel	lope (cor	mpactne	ss + insi	ulation)
q_h_nd	kWh/(m²a) energy n usable kWh/(m²a) usable co				tion has	tracova	a.										
q_ve_rec_h_usable	q_h_nd_net kWh/(m²a) net energy		ntribution					cable)									
q_g_h_out kWh/(m²a) generated								6666 T 4	istrihutio	n losses)						
q_w_nd			v need do			логуу П	00u + 3l	orage 10	5363 T U	Junuulu	1103363	/					
q_g_w_out			heat dhw			d + stora	ae losse	es + distr	ibution l	osses)							
q_del_sum_gas,o coal,bio,, _ dh,other,	il, _el,	kWh/(m²a) sum delive			05		0				t heating	, other e	nergy ca	arriers			
q_exp_sum_el																	

Table 9:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

PE

3.1.3 Sources / References Austria

Table 10: Sources / References Austria

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[AEA, 2013]	Kratena, Kurt/ Angela Holzmann, Angela/ Barreto- Gomez, Leonardo/Baumann, Martin/ Bürbaumer, Heimo/Thenius,Gregor/Tretter, Herbert (2013): Bestimmungsgrößen für Energieeffizienz und – verbrauch in Österrreichs Haushalten – Eine Komponentenzerlegung. Influence factors on energy efficiency and energy use in private household in Austria – A decomposition analysis. Publisher: Österreichische Energieagentur – Austrian Energy Agency (AEA), Vienna. Online available: <u>http://www.energyagency.at/fileadmin/dam/pdf/proj</u> <u>ekte/klimapolitik/BEEHOUSE-Endbericht_2013.pdf</u> [2014-08-05]	Final report on. Influence factors on energy effi- ciency and energy use in private households in Austria – A decomposition analysis
[AEA, 2014]	Amtmann, Maria/Altmann-Mavaddat, Naghmeh (2014): Eine Typologie österreichischer Wohnge- bäude, published by the Austrian Energy Agency, Vienna. Online available. <u>http://episcope.eu/fileadmin/tabula/public/docs/bro chure/AT_TABULA_TypologyBrochure_AEA.pdf</u> [2014-08-05]	Austrian Typology Brochure 2014
[Lang, 2010]	Lang, Günter (2010): 1000 Passivhäuser in Öster- reich. Passivhaus Objektdatenbak: Interaktives Dokumentations-Netzwerk Passivhaus.3. Doku- mentationsperiode 2006-2009. Wien, Berichte aus der Enerige- und Umweltforschung 85/2010, Online available: <u>http://www.hausderzukunft.at/hdz_pdf/endbericht_ 1085_1000_passivhaeuser_oesterreich.pdf</u> [2014-08-05]	Final report on documenting the first 1000 passiv houses in Austria
[klimaaktiv, 2013]	klima:aktiv Bauen und Sanieren ÖGUT GmbH (2013): klima:aktiv Bauen und Sanieren. Basiskri- terien 2013 für Wohngebäude und Dienstleis- tungsgebäude Neubau/Sanierung. Version 1.0, Juni 2013, Publisher: Bundesministeirum für Land- und Fortwirtschaft, Umwelt und Wasserwirtaschaft. Online available: <u>http://www.klimaaktiv.at/bauen- sanie-</u> ren/gebaeudedeklaration/basiskriterien2013.html [2014-08-05]	Klimaaktiv certification programme for new build- ings and major retrofits
[klimaaktiv, 2014]	klimaaktiv Bauen und sanieren (ed.) (2014): Ge- bäudereport. Online available: http://www.klimaaktiv.at/bauen- sanieren/bestpractice/gebaeude-report.html	Report on overview on buildings built or renovated according to klimaaktiv criterion
[KPC, 2014]	Kommunalkredit Public Consulting GmbH (ed.) (2014): Sanierungsscheck für Private 2014. Vi- enna. Online available: http://www.umweltfoerderung.at/kpc/de/home/umw elt- frderung/fr_private/energiesparen/sanierungssche ck_2014/ [2014-08-05]	Subsidy for private building sector for retrofit activi- ties
[OIB, 2011]	OiB – Richtlinie 6. Energieeinsparung und Wär- meschutz. Ausgabe: Oktober 2011.Online availabe. http://www.oib.or.at/sites/default/files/rl6_061011 2.pdf [2014-08-05]	OIB guidelines on energy savings and thermal requirements of the buildings
[OIB, 2014a]	OIB – Dokument zur Definition des Niedrigstenergiegebäudes und zur Festlegung von Zwischenzielen in einem "Nationalen Plan" gemäß Artikel 9 (3) zu 2010/31/EU. 28. March 2014. Online available: http://www.oib.or.at/sites/default/files/nationaler_pl an.pdf [2014-08-05]	Definition of the NZEB according to Article 9 (3) of 2010/31/EU

30 New Buildings in National Residential Building Typologies TABULA

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[OIB, 2014b]	OIB – Richtline 6. Energieeinsparung und Wärme- schutz. Entwurf: Juni 2014 www.wien.arching.at/getdownload.php?id=1842 [2014-08-15]	Draft of revised OIB Guidelines 6, published in June 2014

EPISCOPE

3.2 <BE> Belgium

(by EPISCOPE partner VITO)

In the Federal State of Belgium the transposition of the EPBD is a matter of the regions, the Flemish Region, Brussels Capital Region and the Walloon Region. In the following, the definitions and specifications are focused primarily on the Flemish system. The other two have been added for illustrative reasons. The systems are comparable but especially the way the directive is transposed in each of the Regions deserves some attention, especially the Brussels' NZEB definition ("nearly passive") and the transposition of the Directive with NZEB as the required standard from 2015 on.

3.2.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Belgium

Flanders

In the Region of Flanders with approximately 58 % of the Belgian building stock The Flemish Energy Agency (VEA) is charged with the implementation of the Energy Performance Regulation of residential buildings. All information on the current legal requirements and the NZEB definition can be found on their website <u>www.energiesparen.be</u>.

Central to the requirements used in Flanders is the dimensionless E-level representing the primary energy demand which includes heating, cooling, ventilation, DHW and auxiliary energy in a monthly balancing period. The E-level requirement is accompanied by more detailed specifications and required insulation values of the building envelope as a whole (K-value) and of its composing elements (U- or R-values). The package of measures also includes requirements for summer comfort, minimal ventilation and a minimum share of renewable energy. If the requirement for renewable energy is not met, the overall energy performance needs to be 10 % lower than the requirements.

Current legal requirements

The Energy Performance Regulation in Flanders is in place since 2006 and has to be respected for every construction for which an application is required, from new constructions to extensions. From 2006 on a stepwise approach to tightening the rules up to 2021 has been chosen (see table below).

Table 11:	E-level requirements from 2006-2021 in the Flemish Region (Belgium)
-----------	---

Year	2006-2009	2010-2011	2012-2013	2014-2015	2016-2017	2018-2019	2020	2021
E-level	100	80	70	60	50	40	35	30

Current (2014) legal requirements for new buildings are:

Table 12: General legal requirements for 2014 in the Flemish Region (Belgium)

Requirement	Indicator				
Thermal insulation	K-value ¹⁸	Max 40			
Thermal insulation	U _{max} -value	Specific max values per construction element (see table below)			
Energy Performance	E-level	Max 60			
Net energy need for heating	Max (100-25*com	npactness) kWh/m² or 70kWh/m²			
Interior Climate	Minimal ventilatio	n and overheating risk reduction			
Renewable energies Minimum amount (either by thermal solar, PV, biomass boiler, DH, heat pump or pation in renewable energy projects					

¹⁸ A compactness-corrected mean U-value for the whole building envelope

On November 29 2013 the Flemish Government¹⁹ determined the E-level to correspond with the definition of NZEB (BEN²⁰) at lower or equal to 30.

Requirement	Indicator				
Thermal insulation	K-value	Max 40			
	U _{max} -value	Specific max values per construction element (see table below)			
Energy Performance	E-level	Max 30			
Net energy need for heating	Max 70kWh/m ²				
Interior Climate	Ventilation system	has to comply with a list of specifications and norms			
	Overheating	max 6500 Kh per dwelling			
Renewable energies	Solar boiler with a area, oriented in b PV panels produc and with an inclina A Heat pump appl A biomass boiler fine particle emiss A connection to a renewables A participation in usable floor area) Another possibility per m ² of usable f	ng measures has to be applied in the dwelling: a collector with <u>aperture value of min 0.02 m² per m² of usable floor</u> etween E and W and with an inclination of 0-70° ting 7 kWh per m ² of usable floor area, oriented in between E and W ation of 0-70° <u>ied as primary heating source</u> and with a minimum SPF of 4 with an efficiency of min 85 %, which does not exceed certain CO and ion levels <u>and which is applied as primary heating source</u> district heating or cooling network with an energy mix of min 45 % or a renewable energy project within the province (min € 20 per m ² of / to comply with the rules is to produce 10 kWh of renewable energy floor area by a combination of the measures listed above. In that case <u>aditions</u> are cancelled.			

 Table 13:
 General requirements to comply with NZEB in the Flemish Region (Belgium)

The list of demands to qualify as an NZEB dwelling will be evaluated every 2 years. Such an evaluation – the first one due in 2015 – can lead to an adaptation of the list of demands and a consequential refinement of the NZEB definition.

Table 14: Required thermal insulation values for current legal requirements and NZEB in the Flemish Region (Belgium)

	U _{max} (W/m²K)				
Element	Current (2014) NZEB				
Roof and ceiling	0.24				
Exterior wall	0.24				
Floor	0.30	0.24			
Windows	1.80 1.50				
Glazing	1.10				
Doors and gates	2.00				

Calculation method to comply with new building regulations for residential buildings

The EPC calculation in Flanders is a characteristic annual primary energy use calculation, with characteristic meaning with the assumption of a specific climate and a fixed constant room temperature of 18 °C and fixed internal heat gains. The first steps of the calculation are based upon monthly totals and the method concludes with an annual value or E-level. EPC calculations have to be performed with a free downloadable software package from VEA's website.

¹⁹ <u>http://www.energiesparen.be/BEN/eisen</u>

²⁰ In Dutch 'Bijna Energie Neutraal'

The calculation is composed of the following steps:

- 1. Heat loss calculation (transmission, ventilation and thermal bridges);
- 2. Useful heat gains calculation (solar and fixed from appliances and occupants);
- 3. Net energy need calculation (thermal mass of the construction);
- 4. Gross energy need calculation through system performance calculation of the heating installation (delivery, distribution, storage);
- 5. **Energy need for space heating** through heat generation performance calculation (technical specifications of the heat generator);
- 6. System performance for DHW installation calculation (see step 4);
- 7. Solar thermal contribution calculation (technical specifications);
- 8. Energy need for DHW (technical specifications of generator and storage);
- 9. Energy need for auxiliary functions of the technical installations (pumps, electronics, ventilation etc.)
- 10. Energy need for cooling;
- 11. Energy gains through PV or CHP.

For the calculation of thermal bridges (H^{Tjunctions}) one can choose in between 3 options from a very detailed measurement up to a fixed allowance.

Brussels

The highly urbanised Brussels Capital Region makes up for 10 % of the Belgian building stock. In order to prepare the implementation of the EPB Directive's 2020 target the Brussels Capital Region decided on February 21 2013 to tighten its insulation requirements in 2014 to bring them at the same level as the other two regions [IBGE-BIM, 2013]. At the same time it decided to put in place its "EPB-Passive Requirements 2015" which is the transposition of the NZEB definition, based on the Passive House Standard and already to be implemented from 2015 on (with a slight increased stringency from 2018 on) [IBGE-BIM, 2014]. The latter interpretation of the Passive Standard was discussed with the sector and adapted to the Brussels context.

• Current legal requirements

Current (2014) requirements are:

Requirement	Indicator	Indicator			
Thermal insulation	K-value	Max 40			
	U _{max} -value	Specific max values per construction element (see table below)			
Energy Performance	E-level	E-level Max 70			
	Ventilation syste	Ventilation system has to comply with a list of specifications and norms			
Interior Climate	Overheating	max 17500 Kh (The temperature can only exceed 26°C for a maximum of 10% of the time (annually)			

Table 16: Required thermal insulation values for current legal requirements in the Brussels Capital Region (Belgium)

	U _{max} (W/m²K)
Element	Current (2014), also from 2015 on
Roof and ceiling	0.24
Exterior wall	0.24
Floor	0.30
Windows	1.80
Glazing	1.10

• **EPB-Passive Requirements 2015** (as a more stringent standard than NZEB)

As of 2015 – with the implementation of the "EPB-Passive Requirements 2015" [IBGE-BIM, 2014] some of the requirements (or their indicators) change. For example the Elevel is completely substituted by a maximum requirement of total primary energy use. The K-value is completely replaced by the U-values of the building elements:

0	•				
Requirement	Indicator				
Thermal insulation	U _{max} -value	Specific max values per construction element (see table above)			
Airtightness n ₅₀ Max 0.6					
Total primary energy con- sumption	45 kWh/m² *				
Net energy need for Heating	15 kWh/m² *				
	Ventilation system h	has to comply with a list of specifications and norms			
Interior Climate	Overheating	The temperature can only exceed 25°C for a maximum of 5% of the time (annually)			

 Table 17:
 General legal requirements for 2015 (and NZEB) in the Brussels Capital Region (Belgium)

* always calculated with a ventilation D-assumption to put the emphasis on the quality of the building envelope instead of promoting either of the available systems. Some exceptions exist when, due to a bad configuration or a bad orientation of a building, the energy demand can't be reached. In those cases, the requirement for net energy need for heating and primary energy consumption is recalculated taking into account the specific urban characteristics such as a poor compactness and/or less solar gains. This calculation uses thermal insulation values of the building envelope (average U-value 0.85 W/m²K for transparent parts; average U-value 0.12 W/m²K for non-transparent parts). As such, the legislation avoids 'unfortunate' building owners to do excessive investments.

Wallonia

The Walloon Region counts approximately 32 % of the Belgian building stock. The region's NZEB Action Plan [SPW, 2012] provides for a roadmap with progressively more stringent requirements.

• Current legal requirements

Current (2014) requirements [SPW, 2013] are:

Table 18: General legal requirements for 2014 in the Walloon Region (Belgium)

Requirement	Indicator				
Thermal insulation	K-value	Max 35			
	U _{max} -value	Specific max values per construction element (see table below)			
Energy Performance	E-level Max 80				
Net energy need for heating	Max 130 kWh/m²				
Interior Climate	Ventilation system has to comply with a list of specifications and norms				
	Overheating	ating max 6500 Kh per dwelling			

Table 19: Required thermal insulation values for current legal requirements in the Walloon Region (Belgium)

	U _{max} (W/m²K)
Element	Current (2014)
Roof and ceiling	0.24
Exterior wall	0.24
Floor	0.30
Windows	1.80
Glazing	1.10
Doors and gates	2.00

NZEB definition

A Walloon NZEB doesn't exist yet, though the NZEB Action Plan mentions that it will be close to the Passive Standard, but without the heaviest restrictions. "A Nearly Zero energy Building is characterised on the one hand in the conception stage by its energy performance close to or equivalent to the Passive Standard when the building envelope is concerned, and on the other hand by renewable energy production."

Table 20: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB definition in Belgium (Flanders)

							Duilding R	regulation	s – (part 1)	
Country BE Belgium - Flanders						Status	07/2014			
National Requirements for New Residential Buildings							Special Aspec NZEB Definition	ts with regard to the		
Legi	slation /	Stand	daro	ls					Flemish NZEB	
Energ	y Decision	(Energi	ebes	sluit van 19 n	ovember	2010) [VF	R, 2010]		23/11/2013. [V	EA, 2014]
Expla	anation / Co	ommen	ts							
Ene	rgy Servi	ces								
x	Heating		x	DHW	Арр	liances				
x	Cooling		x	Auxiliary	Oth	er:				
x	Ventilatio			Lighting						
Expla	anation / Co	ommen	ts							
Calc	ulation F	Proce	dur	e		Calo	culation period	i		
x	Calculati (building)		nerg	y need for he	ating		Month			
x	Calculati	on of de	elive	red energy (s	system)		Year / Mo	onth		
Expla	anation / Co	ommen	ts							
Con	sideratio	n of S	Spe	cial Techr	nologie	S				
Thern	nal Systems	6								
x	Ventilatio	n syste	m w	ith heat recov	/ery					
х*	Thermals	solar sy	sten	n						
	Other spe	ecial sy	stem	IS:						
On-Si	ite Electricity	y Produ	uction	า	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹		
x	On-site C	ΗP				x	Month	H-C-W		
х	On-site P	V				x	Month	H-C-W		
	Other ene	ergy ge	nera	tion systems	:					
	¹ "self use"	= parts of	the el	ectricity demand	of the build	ng is directly	covered by the pro Household Electric	oduced electric-		
Fynla	anation / Co							··· <i>y</i>		
•	for DHW									
		lirem	ents	s (new bu	ildinas)				
x	U-values			•						
x	Heat tran transmiss	sfer co	-		X*	Primary energy	Agreed we factors	eighting		
Х	Energy n	eed for	hea	ting		Carbon	dioxide emiss	ions		
x *	Delivered				x	Other:	Share of renewable	S**		
Expla	anation / Co	ommen	ts							
*A mi able e	nimum sha energy is no	re of re ot met, t	enew				e requirement ds to be 10 %			
ine re	quirements			depending o	on toobac		Table 12)			

Assessment of energy carriers in Belgium (Flanders)

The assessment of energy carriers in Flanders is determined in the EPB calculation procedure [VEA, 2013b].

Label / type of factor	Primary Energy factor EPW calculation method
used for EPC rating	X
used for building regulations requirements	X
Label (national language)	Omrekenfactor naar primaire energie van de brandstof
Description / type of weighting factor	Factor applied in the compulsory calculation method
Factor is multiplied by delivered energy based on the	gross calorific value
Reference	[VEA, 2013b]
Natural gas	1
Heating oil	1
Electricity	2.5
Electricity production CHP	1.79
District heating	1.49

Table 21: Belgian primary energy factors (Flanders)

Methodological points for discussion in Belgium (Flanders)

The EPB method is evaluated bi-annually together with the many stakeholders involved in the process. Points of improvement are gathered among them and priorities for improvement are determined. The latest evaluation focused specifically on "which improvements of the method are crucial to ensure an adequate and refined energy performance calculation of low and very low energy buildings." A variety of issues for discussion comes out of this procedure. Many of them are related to the inclusion of specific (improved) product values which are not available in the current product library of the software package, or requests for review of methods for currently less applied techniques for which the applied calculation method is not yet well-adapted. Collective heating or DHW systems, thermal solar panels for auxiliary heating, refinement of the integration of micro-CHP etc. are some of the most recent issues raised. The relevant issues are then prioritised on the basis of 5 principles in order of importance: 1) magnitude of proven energy reduction; 2) number of buildings where this could be applicable; 3) amount of E-level points to gain; 4) presence of argumentation; and 5) increased accuracy.

3.2.2 Integration of National Requirements for New Buildings and NZEB Standards in the Belgian Residential Building Typology

Until the first TABULA typology (matrix year and type) was published in 2011 no real Belgian typology existed. The first TABULA typology with its 5 construction year classes (pre 1945, 1946-1970, 1971-1990, 1991-2005 and 2006-2011) and 6 building/dwelling types (single-family house, semi-detached house, terraced house, small multi-family house, multi-family house and apartment block) have now been extended with these 6 new types for the year class post 2011. Note that the typology in Belgium doesn't consider small MFH, MFH and AB as such, but rather uses exposed and enclosed apartments as it considers dwellings ("living units") instead of buildings while the common TABULA systematic refers to whole buildings.

Classification scheme for the Belgian residential building stock ("Building Type Matrix")

	Region	Construction	Additional	SFH	TH	MFH	AB
		Year Class	Classification	Single-Family House	Terraced House	Multi-Family House	Apartment Block
1	national (Belgie)	1945	generic	BE.N.SFH.01.Gen	BE.N. TH.01. Gen	BE.N.MFH.01.Gen	
2	national (Belgie)	1946 1970	generic	BE.N.SFH.02.Gen	BE.N.TH.02.Gen	BE. N. MFH. 02. Gen	BE. N.AB. 02. Gen
3	national (Belgie)	1971 1990	generic	BE.N.SFH.03.Gen	BE.N.TH.03.Gen	BE. N. MFH. 03. Gen	BE.N.AB.03.Gen
4	national (Belgie)	1991 2005	generic	BE.N.SFH.04.Gen	BE.N.TH.04.Gen	BE. N. MFH. 04. Gen	BE. N.AB. 04. Gen
5	national (Belgie)	2006 2011	generic	BE.N.SFH.05.Gen	BE.N.TH.05.Gen	BE. N. MFH. 05. Gen	BE. N. AB. 05. Gen
6	national (Belgie)	2012	generic	BE.N.SFH.06.Gen	BE.N.TH.06.Gen	BE.N.MFH.06.Gen	BE. N. AB. 06. Gen

38 New Buildings in National Residential Building Typologies TABULA

PE

7	national (Belgie)	1945	semi detached sfh	BE.N.TH.01.Semi		
8	national (Belgie)	1945	small mfh		BE.N.MFH.01.Small	
9	national (Belgie)	1946 1970	semi detached sfh	BE.N. TH. 02. Semi		
10	national (Belgie)	1946 1970	small mfh		BE.N.MFH.02.Small	
11	national (Belgie)	1971 1990	semi detached sfh	BE.N. TH.03. Semi		
12	national (Belgie)	1971 1990	small mfh		BE.N.MFH.03.Small	
13	national (Belgie)	1991 2005	semi detached sfh	BE.N.TH.04.Semi		
14	national (Belgie)	1991 2005	small mfh		BE.N.MFH.04.Small	
15	national (Belgie)	2006 2011	semi detached sfh	BE.N.TH.05.Semi		
16	national (Belgie)	2006 2011	small mfh		BE.N.MFH.05.Small	
17	national (Belgie)	2012	semi detached sfh	BE.N. TH. 06. Semi		
18	national (Belgie)	2012	small mfh		BE.N.MFH.06.Small	

Figure 10: Classification scheme ("Building Type Matrix") of the Belgian residential building typology [VITO, 2014], now extended towards new buildings

		SFH	тн	MFH	AB
		Single-Family House Terraced House Multi-Family House		Multi-Family House	Apartment Block
Picture		BE.N.SFH.06.Gen	BE.N.TH.06.Gen	BE.N.MFH.06.Gen	BE.N.AB.06. Gen
Number of dwellings		1	1	33	20
Number of full storeys (conditioned)		2	2	5	11
Number of directly at- tached neighbour build- ings		0	2	0	0
National reference area (conditioned gross floor area)	m²	270	200	2530	3960
TABULA reference area (conditioned floor area, internal dimensions)	m²	229	170	2151	3366

Table 22: Exemplary new buildings representing the latest construction year classes (2012 ...)

Building example: variants meeting three energy performance levels for new buildings

In the following the exemplary multi-family house is demonstrated in more detail. Comparable information for the other buildings can be found in the updated national typology brochure [VITO, 2014].

Table 23 shows the building features for different model cases. The three energy performance levels predetermined by the TABULA concept are specified as follows:

Energy Performance levels

1. Minimum requirements (common practice)

This energy performance level refers to the legal requirements in Flanders in 2012-2013, but as common practice outperforms the minimum legal requirements, the levels 'as applied' were revised slightly. The data from the VEA EPB report 2006-2012 [VEA, 2013a] were used to determine the actual performance levels.

2. Improved Standard (Low Energy)

The Low Energy Standard is based upon a package of tightened requirements for the building envelope and technical installations resulting in an E-level of max 50 for houses and max 40 for apartments. This standard always includes solar thermal panels. It could be compared to the legal requirements in 2016.

3. Ambitious Standard (NZEB)

The NZEB standard refers to the actual definition outlined above. The standard includes both thermal solar panels and PV panels.

Table 23: Exemplary multi-family house (MFH) – definition of variants

As an example, a "Building Type Display Sheet" for one supply system type is shown in Figure 11; it consists of three pages. The first page shows the situation for the building with minimum requirements; the second page shows the adaptations to the minimum requirement situation to result into the Low Energy and the NZEB situations. The third page is a summary of results from an energy, comfort and investment point of view.

<BE> Belgium

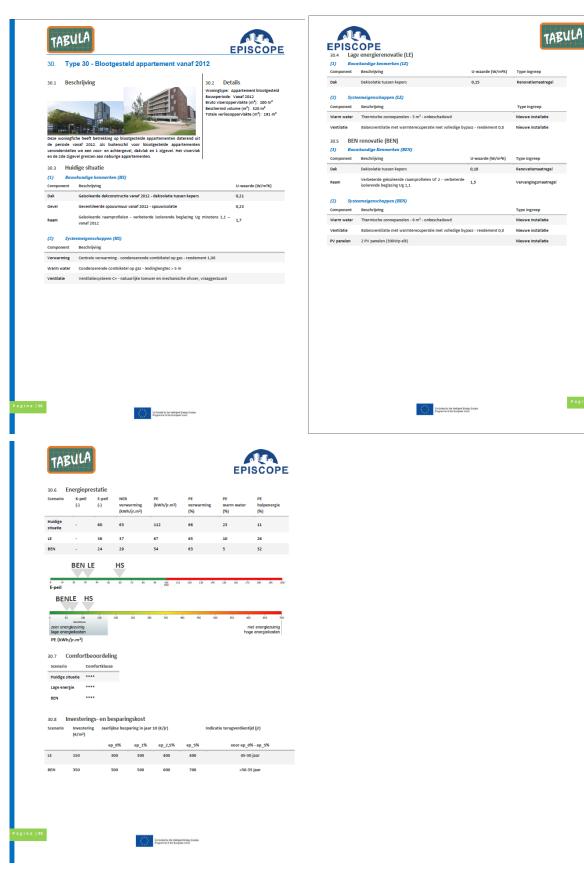


Figure 11: "Building Display Sheet" of the exemplary MFH <BE> [VITO, 2014]

In Table 24 the results of the national EPB calculation procedure for the exemplary MFH are given. Note that the Belgian method considers dwellings or living units instead of buildings. For Belgian single-family houses the dwelling and building calculations will be the same. For MFH (including AB) only dwelling calculations can be made. These are not to be compared with the MFH calculations resulting from the TABULA calculation procedure. The National Typology Brochure contains both enclosed and exposed apartments in those MFH or AB. The example given below is for an exposed apartment. Energy performance of the enclosed apartment (total exposed area of 45m²) is –logically– better.

Variant N°		001	002	003	
Label of the variant triplet		"Natural Gas"			
Variation level		Minimum Requirement	Improved Standard	Ambitious Standard	
Energy standard		Common practice	Low Energy	NZEB	
Calculation method			EPW calculation procedure		
Gross Floor Area	m²	100	100	100	
Protected Volume	m³	320	320	320	
Total exposed area	m²	191	191	191	
E-level		60	36	24	
K-value		35	32	28	
Thermal transfer coefficient by transmission related to envelope area	W/(m²K)	0.43	0.40	0.34	
Primary energy demand	kWh/(m²a)	112	67	54	
Energy need for heating	kWh/(m²a)	63	37	29	
Energy need for heating	%	66	65	63	
Energy need for DHW	%	23	10	5	
Energy need for auxiliary	%	11	26	32	

Table 24: Exemplary MFH – Results of the energy balance calculation; Procedure: Belgian (Flemish) EPB calculation procedure

TABULA calculation results for all exemplary buildings

Table 25 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all six exemplary buildings. The table contains the generic building types SFH, TH, MFH and AB. Additionally it includes the building types TH (semi) and MFH (small) for respectively semi-detached houses and small multi-family buildings.

 Table 25:
 Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd k/Wh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum Requirement	1.18	89	0	89	93	10	11	110	0	0	0	4	0	0	0
	02	Improved Standard	1.12	70	19	51	54	10	13	62	0	0	0	8	0	0	0
BE.N. SFH. 06. Gen	03	Ambitious Standard / NZEB	1.00	64	19	45	49	10	13	55	0	0	0	8	0	0	0
TH	01	Minimum Requirement	0.85	64	0	64	69	10	11	85	0	0	0	4	0	0	0
	02	Improved Standard	0.80	57	20	37	40	10	13	48	0	0	0	8	0	0	0
BE.N.TH.06.Gen	03	Ambitious Standard / NZEB	0.72	54	20	34	37	10	13	43	0	0	0	8	0	0	0
MFH	01	Minimum Requirement	0.93	68	0	68	73	15	16	94	0	0	0	4	0	0	0
	02	Improved Standard	0.90	61	20	41	44	15	18	54	0	0	0	8	0	0	0
BE.N.MFH.06.Gen	03	Ambitious Standard / NZEB	0.83	58	20	38	42	15	18	50	0	0	0	8	0	0	0
AB	01	Minimum Requirement	0.98	64	0	64	69	15	16	90	0	0	0	4	0	0	0
- B	02	Improved Standard	0.97	58	20	38	42	15	18	52	0	0	0	8	0	0	0
BE.N.AB.06.Gen	03	Ambitious Standard / NZEB	0.87	55	20	35	39	15	18	47	0	0	0	8	0	0	0
TH (semi)	01	Minimum Requirement	1.03	82	0	82	86	10	11	103	0	0	0	4	0	0	0
	02	Improved Standard	0.97	63	19	44	47	10	13	55	0	0	0	8	0	0	0
BE.N. TH. 06. Semi	03	Ambitious Standard / NZEB	0.86	60	20	40	44	10	13	50	0	0	0	8	0	0	0
MFH (small)	01	Minimum Requirement	0.85	65	0	65	70	15	16	91	0	0	0	4	0	0	0
MELE	02	Improved Standard	0.82	57	20	37	41	15	18	51	0	0	0	8	0	0	0
BE.N.MFH.06.Small	03 Ambitious Standard / NZEB		0.76	56	20	35	39	15	18	47	0	0	0	8	0	0	0
		ties (TABULA Data															
h_Transmission q_h_nd		W/(m ² K) floor area kWh/(m ² a) energy ne			er coeffi	cient by	transmis	sion / inc	dicator fo	or energ	y quality	of buildi	ng enve	lope (cor	mpactne	ss + insu	ulation)
q_ve_rec_h_usable		kWh/(m ² a) usable co	ntribution	of ventila													
q_h_nd_net q_q_h_out		kWh/(m ² a) net energy kWh/(m ² a) generated							1 1 202	istributio	n lossos)					
q_w_nd		kWh/(m²a) net energy	need do	nestic h	ot water			5			103363	7					
q_g_w_out		kWh/(m ² a) generated	heat dhw	(net ene	ergy nee	d + stora	ige losse	s + distr	ibution l	osses)							
q_del_sum_gas,o coal,bio,, _ dh,other,	el,	kWh/(m ² a) sum delive	ered energ	yy, energ	y carrier	gas, oil,	coal, bi	omass, e	electricity	y, district	t heating	, other e	nergy ca	arriers			
q exp sum el	kWh/(m²a) sum produced electricity (negative value)																

kWh/(m²a) sum produced electricity (negative value)

q_exp_sum_el

3.2.3 Sources / References Belgium

Table 26: Sources / References Belgium

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[IBGE-BIM, 2013]	IBGE-BIM (2013): Les exigences PEB 2014 et 2015. Available from URL: http://documentation.bruxellesenvironnement.be/d ocu- ments/IF_ENERGIE_NvlleExigencesPEB_FR.PDF	Brussels' EPB requirements for 2014 and 2015
[IBGE-BIM, 2014]	IBGE-BIM (2014): Les exigences PEB à partir de 2015. Available from URL: <u>http://documentation.bruxellesenvironnement.be/d</u> <u>ocuments/IF_NRJ_ExigencesPeb2015FR.PDF</u>	Brussels' EPB requirements as of 2015 = NZEB requirements
[SPW, 2012]	Service Public de Wallonie (2012): Plan d'action NEZB en vue de la transposition de l'article 9 du recast de la directive europeenne relative a la performance energetique des batiments (directive 2010/31/CE du 19 Mai 2010) Available from URL: <u>http://energie.wallonie.be/fr/plan-d-action-</u> <u>nzeb.html?IDD=89872&highlighttext=nzeb+&IDC=</u> <u>8011</u>	Walloon NZEB Plan
[SPW, 2013]	Service Public de Wallonie (2013): Reglementa- tion PEB. Available from URL: <u>http://energie.wallonie.be/fr/la-reglementation- peb.html?IDC=6232</u>	Walloon EPB requirements
[VEA, 2013a]	VEA (2013): Cijferrapport energieprestatietregelgeving. Procedures, resulta- ten en energetische karakteristieken van het Vlaamse gebouwenbestand - periode 2006-2012. Available from URL: <u>http://www2.vlaanderen.be/economie/energiespar</u> <u>en/epb/doc/EPBincijfers-2006-2012.pdf</u>	VEA report on the performance of new buildings based on EPB data from 2006-2012.
[VEA, 2013b]	VEA (2013): Methodologie. Available from URL: http://www.energiesparen.be/node/3476	VEA webpage with the EPB methodology and formula structure.
[VEA, 2014]	VEA (2014). Wat is een BEN woning? Available from URL: http://www2.vlaanderen.be/economie/energiespar en/epb/doc/watiseenbenwoning.pdf	VEA publication on NZEB definition.
[VITO, 2014]	Cuypers, Dieter/Vandevelde, Birgit/Van Holm, Marlies/Verbeke, Stijn (2014): Belgische Woning- typologie. Nationale brochure over de TABULA woningtypologie. Versie 2, published by VITO.Available from URL: <u>http://episcope.eu/fileadmin/tabula/public/docs/bro</u> <u>chure/BE_TABULA_TypologyBrochure_VITO.pdf</u>	Belgian Building typology brochure from EPI- SCOPE. Updated version with new buildings.
[VR, 2010]	Vlaamse Regering (2010). Besluit van de Vlaamse Regering houdende algemene bepalingen over het energiebeleid [citeeropschrift "het Energiebesluit van 19 november 2010". Available from URL: <u>http://codex.vandenbroele.be/Zoeken/Document.a</u> <u>spx?DID=1019755&param=inhoud</u>	Decision of the Flemish Government on its energy policy.

3.3 <CY> Cyprus

(by EPISCOPE partner CUT)

The first attempt in Cyprus to introduce energy conservation in buildings was the preparation of a voluntary CYS98:1999 Standard for the Insulation and Rational Use of Energy in Dwellings [MCIT, 2012a]. The Law for the Regulation of the Energy Performance of Buildings of 2006 took effect as of 21/12/2007 by enacting the legislation concerning the minimum requirements for the energy performance of buildings. The issuance of Certificates for the Energy Performance for Buildings (EPB) was implemented as of 1st of January 2010 for residential buildings [MCIT, 2009a]. Currently there is an updated legislation the 2012, N.210 (I)/2012 on the 28/12/2012 and the latest revision of the minimum requirements for the energy performance of buildings (K. Δ . Π .432/2013) was enacted as of 13/12/2013. As a next step towards nearly zero-energy buildings, it includes a tightening of the requirements for new buildings [ECOFYS, 2013].

For the purpose of setting the definition of the NZEB in Cyprus the Energy Service (ES) of the Ministry of Energy, Commerce, Industry and Tourism (MECIT) has carried out the in depth study [MCIT, 2013] of the potential of energy saving in the identified as most commonly used 3 categories of residential buildings:

i) Detached 2 storey house

- ii) Terraced houses
- iii) Apartments on building blocks.

These are located in the 4 climatic zones: Coastal areas, lowlands, low mountainous areas (from 300m up to 600m from sea level) and high mountainous area; of the country as defined in the national methodology for the energy performance of buildings.

The action plan presents the essential measurements that will enable Cyprus to harmonise with the Directive 2010/31/EU and enforce the NZEB on new public buildings by 2018 and all new buildings by 2020.

The report's findings regarding the preliminary minimum energy requirements, definitions and methodology are under revision and an appropriate benchmark is yet to be defined.

3.3.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Cyprus

The first attempt to introduce energy conservation in buildings was the preparation of a voluntary CYS98:1999 Standard for the Insulation and Rational Use of Energy in Dwellings.

This standard became a legal requirement in 2006 and was implemented in 2007. Later in January 2010 the Energy Performance Certificates along with the Methodology for Assessing the Energy Performance of Buildings (MAEPB), were made an integral part of the regulatory system. The latest revision of the minimum requirements for the energy performance of buildings was employed on the 13/12/2013.

In 2012 the first action plan regarding NZEB was published, in 2013 a revision of this was issued [ECOFYS, 2013]. As a next step towards NZEB, in 2014, the minimum requirements for NZEB were announced and are now under consultation.

The national plan for increasing the number of nearly zero-energy buildings introduce policies and measures towards achieving NZEB by 2020 in three stages [ECOFYS, 2013]:

- 1. Design and announcement of a linear tightening of the minimum energy performance requirements leading to the 2020 NZEB (2012-2015)
- 2. Second and third revision of the minimum energy performance requirements (2015-2018)
- 3. Implementation of the Third Revision of the Minimum Energy Performance Requirements (2018-2020)

The NZEB has been described as a very energy efficient building. The nearly zero or the very low amount of energy required should consist heavily on energy from renewable sources, including sources locally produced or near the building. Currently the Energy Service is working towards finalising the benchmark for minimum requirements of the building envelope, the methodology, the definition of the actual energy levels and percentage of Renewable energy sources required on a building to be classified as a NZEB. For this the building must have an Energy Performance Certificate class A according to the preliminary national methodology for energy performance of buildings [MECIT, 2014a].

Minimum requirements for new residential buildings in Cyprus

The current minimum requirements for the energy performance of new buildings were enforced in 13/12/2013, under the Amendment of the Law for the Regulation of the Energy Performance of the Buildings of 2012, N.210 (I)/2012 [MCIT, 2012b]. As a result a new class (B+) has been introduced to the Energy Performance Certificates (EPC) [Republic of Cyprus, 2013].

The National Methodology for Calculating the Energy Performance of Buildings [MCIT, 2009b] uses the simulation software SBEMcy, which calculates the energy demands of each space in the building according to the activity within it. Different activities may have different temperatures, operating periods, lighting levels, etc. SBEMcy calculates the heating and cooling energy demands by carrying out an energy balance based on monthly average weather conditions. This is combined with information about system efficiencies in order to determine the energy consumption. The energy used for lighting and domestic hot water is also calculated. Therefore, the energy saving ordinance includes a complete description of parameters (U-values, supply system type and quality), which is applied to calculate a building-related primary energy requirement.

Cyprus calculation method to comply with new building regulations for residential buildings

The National Methodology for Assessing the Energy Performance of Buildings is also used to issue Energy Performance Certificates by utilizing the SBEMcy simulation software. The National Methodology defines set point temperatures, typical outdoor climatic condition, typical functionality, and primary energy conversion factors [MCIT, 2009b].

Finally reports are prepared to the standard format to provide

- 1. Comparison of Primary Energy between the actual and Reference Building
- 2. Confirmation of the elemental and data compliance check

According to the Methodology for Assessing the Energy Performance of Buildings (MAEPB) each building is divided into a series of zones (following the zoning rules), each of which may have different internal conditions or durations of operation (U-Values, lighting, Heating Ventilation and Air-conditioning system and Domestic Hot Water). The approach of setting up multiple activity areas allows buildings to be defined more correctly. The software also allows for the input of the energy produced by Renewable Energy Sources mainly Photovoltaic Systems and wind generators.

The current definition (MCIT, 2013; MECIT, 2014a):

NZEB: building with very high energy efficiency, determined according to the methodology for calculating the energy performance of a building and whose almost zero or very low amount of energy required is covered largely with energy from renewable sources, including locally produced or close to the building;

<CY> Cyprus

For Residential Buildings [MCIT, 2013]:

As previously mentioned the NZEB methodology and process is undergoing changes therefore existing and preliminary values are presented below.

Primary Energy Use: 180 kWh/m²/yr (existing), 100 kWh/m²/year (preliminary value)

The numerical indication above includes primary energy use for heating, cooling, lighting and domestic hot water.

At least 25 % of the 180 kWh/m2/yr of the Primary Energy must be covered by RES.

The NZEB defined in terms of primary energy use index and percentage of energy from renewable sources. Reference building is used for calculations.

For this the building must have an Energy Performance Certificate class A according to the preliminary national methodology for energy performance of buildings.

The NZEB's definition, the current minimum requirements and the primary energy use were published and are now under revision.

Under consultation [MECIT, 2014b]: The reduction of Primary Energy Use from 180 kWh/m2/yr to 100 kWh/m2/yr

Table 27: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (preliminary) NZEB definition in Cyprus

Е

			C	alculation	Metho	d New I	Building R	egulation	s – (part 1)			
Cou	ntry	CY	Су	/prus					Status	08/2014		
Natio	onal Re	quirer	nent	s for New	Reside	ential B	uildings			with regard to the tional NZEB Defini-		
Legi	slation	/ Stan	darc	ls					Legislation in pre 2014 [MECIT, 20	paration, MECIT,		
(I)/20 1	12 [MCIT,	2012b]		Energy Perfo	ormance	of the Bui	Idings of 2012	2, N.210	2014 [MEC11, 20	140]		
· ·	nation /		nts						Mathadalagy and	l aaftuuara far tha		
	Energy Services								Methodology and software for the Energy Performance Certification of			
x	Heating	-	X	DHW		liances			NZEB (1st Stage			
x	Cooling	•	X	Auxiliary	Oth	er:				g of the software for of the NZEB. (2nd		
×		Ventilation x Lighting						Stage 2015-2018				
Explanation / Comments									ftware for the Certifi- EB. (3rd Stage 2018-			
Calc	ulation	Proce	dur	9		Calc	ulation period		,			
x	Calculation of energy need for heating (building)						year					
x	Calculation of delivered energy (system)											
single Cons		arrier EA	AC	cial Techn	ologie	s						
	nal Syster											
X		•		th heat recov	ery							
x		al solar s										
On-Si	te Electric	pecial sy city Prod			Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹				
	On-site	CHP										
	On-site											
	Other e	nergy ge	enera	tion systems:								
							covered by the pro					
Expla	nation /	Comme	nts									
Туре	e of Red	quirem	ents	s (new bui	ldings)					definition of NZEB's		
x									suggests the red			
	Lloot transfor apofficient by				Primary energy	non-renew	able	Energy Use from 180 kWh/m2/yr to 100 kWh/m2/yr and is now under public onsultation				
x	Energy need for heating Carbo		Carbon	dioxide emiss	ions	EPC CLASS A						
	Deliver	ed energ	ју			Other			At least 25 % of the Primary Energy must be covered by RES			
	nation /	-								.,		

Assessment of energy carriers in Cyprus

There is a single energy carrier in Cyprus for Electricity the Electricity Authority of Cyprus.

<CY> Cyprus

Table 28: Cyprus primary energy factors

Label / type of factor	Primary Energy Factor of the Cyprus Calculation Methodology (MAEPB)					
used for EPC rating	x					
used for building regulations requirements	x					
Label (national language)	Παράγοντες μετατροπής πρωτογενούς ενέργειας (ΜΥΕΑΚ)					
Description / type of weighting factor	kWh of primary energy per kWh of the building's delivered energy.					
Factor is multiplied by delivered energy based on the	gross calorific value (H _s)*					
Reference	[MCIT, 2009b]					
Natural gas	1.1					
Heating oil	1.1					
Firewood	1.1					
Wood pellets	2.7					
Electricity	2.7					
Electricity production CHP	2.7					
Electricity production PV system	1					
District heating	1					

* The primary energy is considered to include the delivered energy, plus an allowance for the energy "overhead" incurred in extracting, processing, and transporting a fuel or other energy carrier to the building. Hence, the primary energy factors in the table above denote kWh of primary energy per kWh of the building's delivered energy.

Methodological points for discussion in Cyprus

Interesting discussion points:

- Regulation changes are happening according the national plan, there is no reference building, example strategy or a standard software tool for simulating the NZEB. Lack of reasoning, method and process.
- The EPC methodology allows for Photovoltaic systems, wind turbines and combined heat and power (CHP) systems. However wind turbines are not allowed to be used in densely populated areas.
- Electricity production is to the grid directly
- The current applicability and industry knowledge on new technologies
- The regulations focus on heating period and u-values, not thermal mass and cooling period/ shading devices, natural ventilations systems etc.

3.3.2 Integration of National Requirements for New Buildings and NZEB Standards in the Cyprus Residential Building Typology

In 2009 the Statistical Service of Cyprus contacted a census that paved the way towards the national residential typologies. This was developed in order to collect data regarding the energy consumption in households [Cyprus Statistical Service, 2009]. In 2010 researches [Panayiotou, et al., 2010] elaborated on the relationship of building typologies and year of construction in relation with the software for the issuance of EPCs the SBEMCy. Later in 2012 the Cyprus Energy Agency under the framework of Intelligent Energy Europe published a detailed report regarding Building Typologies in Cyprus and information related to energy consumption, population, funding systems and more [Cyprus Energy Agency, 2012]. However the national residential building typology was utilized by the study the Energy Service (ES) of Ministry of Energy, Commerce, Industry and Tourism (MECIT) contacted via Exergia in order to define the NZEB [Exergia, 2012]. The integration of the residential building typology with national minimum requirements is being further developed by CUT during the IEE EPISCOPE Project.

The latest revision of the minimum requirements for the energy performance of buildings was employed on the 13/12/2013, hence representative exemplary buildings for this construction year (after 2014) and not yet available. According to an agreement between the EPISCOPE partners the same exemplary buildings as for the preceding construction year class can be used for a transition period in such a case. To indicate this the appearance of the building pictures are changed.

	Region	Construction	Additional	SFH	TH	MFH	AB
		Year Class	Classification	Single-Family	Terraced House	Multi-Family	Apartment Block
				House		House	
1	national (Cyprus)	1980	generic	CY.N.SFH.01.Gen	CY.N.TH.01.Gen	CY.N.MFH.01.Gen	
2	national (Cyprus)	1981 2006	generic	CY.N.SFH.02.Gen	CY.N.TH.02.Gen	CY.N.MFH.02.Gen	
3	national (Cyprus)	2007 2013	generic	CY.N. SFH. 03. Gen	CY.N. TH.03. Gen	CY.N.MFH.03.Gen	
4	national (Cyprus)	2014	generic	CY.N.SFH.04.Gen	CY.N.TH.04.Gen	CY.N.MFH.04.Gen	

Classification scheme for the Cyprus residential building stock ("Building Type Matrix")

Figure 12: Classification scheme ("Building Type Matrix") of the Cyprus residential building typology

Building Size Class		SFH	тн	MFH
		Single-Family House	Terraced House	Multi-Family House
Picture		CY.N.SFH.03.Gen CY.N.SFH.04.Gen	CY.N.TH.03.Gen CY.N.TH.04.Gen	CY.N.MFH.03.Gen CY.N.MFH.04.Gen
Number of dwellings		1	1	1
Number of full storeys (conditioned)		2	2	4
Number of directly attached neighbour buildings		0	1	0
National reference area (conditioned floor area, internal dimensions)	m²	170	125	1350
TABULA reference area (con- ditioned floor area, internal dimensions)	m²	170	125	1350

Table 29: Exemplary new buildings representing the latest construction year classes (2014 ...)

Building example: variants meeting three energy performance levels for new buildings

In the following the exemplary multi-family house is demonstrated in more detail. Comparable information for the other buildings can be found in the updated national typology brochure [CUT, 2014].

Table 30 shows the building features for different model cases. The three energy performance levels predetermined by the TABULA concept are specified as follows:

Energy Performance levels

- "Minimum Requirements" ("Ελάχιστες Απαιτήσεις Ενεργειακής Απόδοσης Κτιρίων Κ.Δ.Π 423/2013")
 Combination of building construction elements and supply system that exactly complies with the current minimum requirements (Κ.Δ.Π 423/2013)
- 2. **"Improved Standard"** ("Αυστηρότερες τιμές U-Value στο κτιριακό κέλυφος") Increasing the level of thermal insulation of the building envelope.
- "Ambitious Standard / NZEB" ("Παράμετροι Σχεδιασμού Κατοικιών με Σχεδόν Μηδενική Ενεργειακή Κατανάλωση") Increasing the level of thermal insulation of the building envelope to match the minimum requirement values for the preliminary NZEB standards. Integrating Renewable Energy Sources (RES) to the building's electromechanical systems to offset the primary energy demand by at least 25 %.

One basic of heat supply systems has been defined that also provides cooling:

"Electricity" (Variants 01, 02, 03):

- Variant 01 is predefined by the EPC national minimum requirements that the building is class B or higher: The U-values as well as the description of the heating system (air conditioning split unit + thermal solar system for DHW) have been directly taken from the regulation.
- Variant 02 consists of the same system but the U-values are considerably lower, these are 86.5 % lower than the current national minimum requirements of variant 01. The heat supply system remains the same.
- For Variant 03 U-values that meet the preliminary NZEB minimum requirements, these are 68 % lower than the current national minimum requirements of variant 01. For the electromechanical systems a class A++ air conditioning split unit was selected with PV to offset minimum 25 % of the electricity production. The heat supply system remains the same.

Label of the variant triplet			"04"		
Variant N°		001	002	003	
Energy Performance Leve	I	Minimum Requirement	Improved Standard	Ambitious Standard / NZEB	
U-values					
Roof	W/(m²K)	0.60	0.52	0.42	
Wall	W/(m²K)	0.65	0.56	0.45	
Window	W/(m²K)	3.20	2.80	2.80	
Floor	W/(m²K)	0.65	0.56	0.44	
Thermal bridging supplement (whole envelope)	nt W/(m²K)	Average 0.32	Average 0.32	Average 0.32	
Heat Supply System			·		
Heat generator		air conditioning split unlts class A+	air conditioning split units class A+	{ air conditioning split units class A+	
Specification / Supplement	ntal system				
Ventilation system		ext. air	ext. air	ext. air	
Thermal solar system		DHW	DHW	DHW	
Further system			PV	PV	

Table 30: Exemplary multi-family house (MFH) – definition of variants [MCIT, 2009b]

<CY> Cyprus

Figure 13: "Building Display Sheet" of the exemplary MFH.04 <CY> [CUT, 2014]

Variant N°		001	002	003		
Label of the variant triplet		"Electricity"				
Variation level		Minimum Require- ment Improved Standard		Ambitious Standard / NZEB		
Calculation method		EPC, MAEP	B Κ.Δ.Π432/2013- NZEB	prelim. values		
National reference area*	m²	1350	1350	1350		
Thermal transfer coefficient by transmission related to envelope area	W/(m²K)	0.63	0.55	0.41		
Energy need for heating	kWh/(m²a)	21.1	16.8	14.3		
Delivered energy						
Fossil fuels	kWh/(m²a)	0	0	0		
Renewable fuels	kWh/(m²a)	0	0	0		
Electricity	kWh/(m²a)	47.9	43.5	28.1		
Auxiliary energy demand	kWh/(m²a)	3.6	3.6	3.6		

Table 31: Exemplary MFH.04 – Results of the energy balance calculation; Procedure: TABULA method

*) gross reference area

EPISCOPE TABULA

**) The improved standard does not follow a national calculation method, just are tighter U-values.

***) Requirement is for class B and above, the Primary Energy Demand as calculated by Tabula.xls is within the expectable Demand for an EPC class B.

****) Primary Energy Demand includes 25 % of energy produced by RES, NZEB Requirements, Primary Energy Demand 100 kWh/(m²a), of which a minimum 25 % has to be covered by RES

TABULA calculation results for all exemplary buildings

..._dh, ..._other, ..._el q_exp_sum_el

kWh/(m²a) sum produced electricity (negative value)

The following table shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

Е

Table 32:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

Building	Var. N°	Performance	Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil k\Vh/(m²a)	q_del_sum_coal k/\h/(m²a)	q_del_sum_bio kVVh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kVVh/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum Requiren		3.38	34	0	34	32	10	16	0	0	0	0	55	0	0	0
THE REAL	02	Improved Standard		2,86	29	0	29	26	10	16	0	0	0	0	49	0	0	0
CY.N.SFH.04.Gen	03	Ambitiou Standard		2.28	22	0	22	20	10	29	0	0	0	0	35	0	0	0
TH	01	Minimum Requiren		3.43	33	0	33	31	10	16	0	0	0	0	54	0	0	0
法出	02	Improved Standard		2.87	27	0	27	24	10	16	0	0	0	0	48	0	0	0
CY.N.TH.04.Gen	03	Ambitiou Standard		2.44	22	0	22	20	10	29	0	0	0	0	35	0	0	0
MFH	01	Minimum Requiren		1.52	20	0	20	17	15	21	0	0	0	0	47	0	0	0
	02	Improved Standard		1.33	17	0	17	14	15	21	0	0	0	0	44	0	0	0
CY.N.MFH.04.Gen	03	Ambitiou Standard		1.01	13	0	13	10	15	34	0	0	0	0	26	0	0	0
Explanation of	Quanti	ties (TABl	JLA Data	fields)														
h_Transmission		W/(m ² K)	floor area			er coeffi	cient by	transmis	ision / ind	dicator fo	or energ	y quality	of buildi	ng enve	ope (co	mpactne	ss + insi	ulation)
	q_h_nd kWh/(m²a) energy ne					tion he -	+ =====	.,										
q_ve_rec_h_usable q_h_nd_net	re_rec_h_usable kWh/(m ² a) usable co n_nd_net kWh/(m ² a) net energ							cabla)										
q_n_nu_net q_g_h_out										sses + d	istributio	n losses	3					
		enerated heat heating system (net energy need + storage losses + distribution losses) et energy need domestic hot water																
			nerated heat dhw (net energy need + storage losses + distribution losses)															
q_del_sum_gas,oil, coal,bio,, el, kWh/(m²a) sum deliv			ered energ	jy, energ	y carrier	gas, oil	, coal, bi	omass, e	electricity	y, district	t heating	, other e	nergy ca	irriers				

3.3.3 Sources / References Cyprus

Table 33: Sources / References Cyprus

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[CUT, 2014]	CUT (2014): Typology brochures for Cyprus,	
[Cyprus Energy Agency, 2012]	Eνεργειακό Γραφείο Κυπρίων Πόλιτών (2012): Τυπολογία Κτιριακού Αποθέματος στην Κύπρο http://www.cea.org.cy/TOPICS/Buildings/Buildings typologyCyprus.pdf Accessed: 30/07/2014	Census of the Building stock Typology in Cyprus, published by the Cyprus Energy Agency
[Cyprus Statistical Service, 2009]	Στατιστική Υπηρεσία Κύπρου (2009): Έρευνα για την τελική κατανάλωση ενέργειας στα νοικοκυρία <u>http://www.mof.gov.cy/mof/cystat/statistics.nsf/All/</u> <u>4D81522FDBE27569C225779F003B8677/\$file/H</u> <u>H_Energy_Consumption-2009-EL-</u> <u>150910.pdf?OpenElement</u>	Research on the Final Energy Consumption of Households, Questionnaires, published by the Cypriot Statistical Service
[ECOFYS, 2013]	ECOFYS (ed.) (2013): National plan for increasing the number of nearly zero-energy buildings in Cyprus ECOFYS 15 May 2013 European Com- mission, Publisher: MECIT	Includes targets differentiated according to the category of building and the steps needed to meet the dates of 2018 and 2020 that will support the implementation of nZEB and including national measures and requirements concerning the use of RES in new and existing buildings undergoing major renovation.
[Exergia, 2012]	Exergia (ed.) (2012): Provision of consulting services for the definition of the NZEB (residential) in Cyprus <u>http://www.mcit.gov.cy/mcit/mcit.nsf/All/44D2917D</u> <u>F3B1EDCCC2257A390035FEB6/\$file/CY-</u> <u>NZERB_results.pdf</u> Accessed: 30/07/2014	Presentation of the results
[MCIT, 2009a]	Κ.Δ.Π.446/2009Ο περί ρύθμισης Ενεργειακής Απόδοσης κτιρίωνΝόμος, Δίαταγμα.http://www.mcit.gov.cy/mcit/mcit.nsf/All/DF8E187B6AF21A89C22575AD002C6160/\$file/KDP446_2009%20peri%20Rythmisis%20Energeiakis%20Apodosis%20Ktirion(Apaitiseis%20Elaxistis%20Energeiakis%20Apodosis%20Ktiriou)%20Diatagma.pdfAccessed: 30/07/2014	National Minimum requirements and terminology explaination
[MCIT, 2009b]	Infogrend Innovations/BRE (2009): Methodology for Assessing the Energy Performance of Build- ings. August 2009 for the Ministry of Energy, Commerce, Industry and Tourism (MECIT) <u>http://www.mcit.gov.cy/mcit/mcit.nsf/0/E074577C5</u> <u>8AD9EFCC22575B60047BEA8/\$file/Methodology</u> %20for%20Assesing%20the%20Energy%20Perfo <u>rmance%20of%20Buildings.pdf.pdf</u> Accessed: 30/07/2014	Overview on the Methodology for Assessing the Energy Performance of Buildings.
[MCIT, 2012a]	REPUBLIC OF CYPRUS (MCIT) (ed.) (2012): Nearly Zero Energy Buildings Action Plan CY- PRUS September 2012 Available at: http://ec.europa.eu/energy/efficiency/buildings/doc /ms_nzeb_national_plans.zip	The action plan containing all the essential infor- mation to enable Cyprus to harmonise with the Directive 2010/31/EU and enforce the NZEB on new public buildings by 2018 and all new buildings by 2020.
[MCIT, 2012b]	MECIT / N.210(I)/2012 Ο περί ρύθμισης Ενεργειακής Απόδοσης κτιρίων Τροποποιητικός Νόμος, Κυπριακή Δημοκρατία, 28.12.2012 http://www.mcit.gov.cy/mcit/mcit.nsf/All/DF8E187B 6AF21A89C22575AD002C6160/\$file/N210(i)_201 2%20peri%20Rithmisis%20Energiakis%20Apodos is%20Ktirion%20Tropolitikos%20Nomos.pdf Accessed: 30/07/2014, Publisher The Republic of Cyprus	Regulation regarding the adjustment/control of Energy Perfomance of buldings

56 New Buildings in National Residential Building Typologies TABULA EPISCOPE

new	Buildings in	National	Residential	Building	rypologies
	A REAL PROPERTY AND A REAL	A CONTRACTOR OF THE OWNER			L II and the

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[MCIT, 2013]	Republic of Cyprus (MCIT) (2013): Calculation for Setting the Minimum Energy Performance Re- quirement at Cost Optimal Levels According ton Article 5 of the Directive 2010/31/EE for the En- ergy Performance of Buildings (recast)	Energy Efficiency – Implementation National reports on calculation of cost-optimal levels of minimum energy performance require- ments CYPRUS
	http://ec.europa.eu/energy/efficiency/buildings/imp lementation_en.htm	
	National Report	
[MECIT, 2014a]	Νίκος Χ"Νικολάου, για το Υπουργείο Ενέργειας, Εμπορίου, Βιομηχανίας και Τουρισμού (2014): Κτίρια με Σχεδόν Μηδενική Κατανάλωση Ενέργειας, (MECIT) 16/05/2014	Presentation of public consultation for NZEB in Cyprus
	http://www.mcit.gov.cy/mcit/mcit.nsf/All/44D2917D F3B1EDCCC2257A390035FEB6/\$file/DIABOYLE YSH_KSMKE_16APRIL14.pdf	
[MECIT, 2014b]	Παραμέτροι Σχεδιασμού κατοικιών με σχεδόν μηδενική ενεργειακή κατανάλωση	Parametres for nearly zero energy houses and minimum requirements.
	Υπουργείο Ενέργειας, Εμπορίου, Βιομηχανίας και Τουρισμού, 24/02/2014	NZEB regulations in preparation for public consul- tation.
	http://www.mcit.gov.cy/mcit/mcit.nsf/All/44D2917D F3B1EDCCC2257A390035FEB6/\$file/KATOIKIES %20SXEDON%20MHDENIKHS%20KATANALVS HS%20ENERGEIAS_PARAMETROI%20SXEDIA SMOU.pdf	
[Panayiotou, et al., 2010]	Panayiotou, G.P./Kalogirou, S.A./Florides, G.A./Maxoulis, C.N./Papadopoulos, A.M./Neophytou, M./Fokaides, P./Georgiou, G./Symeou, A./ Georgakis, G. (2010): The charac- teristics and the energy behaviour of the residen- tial building stock of Cyprus in view of Directive 2002/91/EC. In: Energy and Buildings, Issue 42 p.p: 1083-2089	This scientific paper presents the outline, goals and methodology of a research project and the findings regarding the energy behaviour and other characteristics of the residential building stock of Cyprus.
[Republic of Cyprus, 2013]	Κ.Δ.Π.433/2013 Κυπριακή Δημοκρατία (2013): Ο περί ρύθμισης Ενεργειακής Απόδοσης κτιρίων Τροποποιητικό Διάταγμα, 11/12/2013	Revised regulation regarding the adjust- ment/control of Energy Perfomance of buldings

3.4 <CZ> Czech Republic

(by EPISCOPE partner STU-K)

The reduction of final energy consumption in the Czech housing sector is one of the most crucial tasks for the Czech Republic in the upcoming years and decades. The national energy strategic planning is following the EU political targets.

In the past decades Czech Republic followed the concepts for lowering energy demand and consumption in buildings developed in Austria and Germany.

The real interest in design and construction of low energy buildings raised considerably in the 90s of previous century.

Up to now several thousands of low energy buildings were built on the territory of the Czech Republic out of which around 800 comply with the passive house definition. The first Czech passive house was built in 2004. In 2008 there were only several dozens of passive houses built; the most famous project from this pioneer period is a set of 13 houses in Koberovy u Trutnova.

Current requirements for new and refurbished buildings are defined by the new Czech legislation; these criterions will become gradually stricter in order to meet the targets of 2020.

Renovations to highly efficient (nZEB) level are still not clearly defined. Once the process comes to an end the corresponding requirements will be tightened in the national building codes.

In order to support energy efficiency projects following subsidy programmes addressing the building sector were launched:

- State program for energy savings and RES;
- Operation program environment;
- Operation program enterprise and innovations;
- Green investment scheme;
- New panel program;
- Regional programs.

3.4.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Czech Republic

In 2010 the EPBD recast Directive [EPBD 2010] was adopted by the Czech legislation. In 2012 and 2013 the Czech Parliament approved the implementing regulations, especially the amendment to the Energy Management Act No. 406/2000 Coll. [CZ LAW 406] and the Decree No. 78/2013 Coll. on the Energy Performance of Buildings [CZ DEC 78].

The latter defines:

- Cost optimum requirements for the energy efficiency of new buildings, refurbishments and NZEB;
- Energy efficiency calculation methodology using "reference building";
- Model for technical, economic and ecological feasibility of alternative energy supply system;
- Model for definition of recommended measures to reduce energy efficiency of buildings;
- Energy performance certificate template;
- Display Energy certificate rules.

Minimum requirements for new residential buildings in Czech Republic

Following energy performance parameters are taken into account for the evaluation of energy efficiency of new residential buildings:

- a) total annual primary energy;
- b) non-renewable primary energy;
- c) total delivered annual energy
- d) partial delivered energies for technical systems (heating, cooling, ventilation);
- e) air conditioning, DHW and lighting;
- f) average U value of the building envelope;
- g) U-values of building elements on the "system borders";
- h) efficiency of technical systems.

Table 34: Required energy performance indicators for new buildings and refurbishments

	Fulfilment of energy performance indicator required (compulsory)							
Energy performance indicator	Newly built and extensions		Refurbishments					
	≥ 25% of existing floor area	Option 1	Option 2	Option 3	Option 4			
Non-renewable primary energy (max. quantity allowed)	x	x						
Total delivered energy	x		x					
Mean U-value of building envelope	x	x	x					
Efficiency of HVAC components				х				
Partial U-value of replaced elements					x			

In the coming years the value of non-renewable primary energy demand will be decremented by using $\Delta e pR$ (see Table 35).

The new requirement can be fulfilled either by increasing the share of renewable energy or by improving the building envelope parameters.

Table 35:	Non renewable primary energy decrement factors for reference buildings	5
-----------	--	---

Parameter	Symbol	Units	Type of building or zone	Reference value as of 1/1/2015			
		Units		Refurbishment	New	NZEB	
Non renewable primary energy decrement for reference building	∆e pR	%	SFH, TH	3	10	25	
		%	MFH, AB	3	10	20	
		%	Other	3	8	10	

Czech calculation method to comply with new building regulations for residential buildings

The new decree about energy performance of buildings introduced the method of so called reference building. Reference building is a virtual building with the same amount of delivered energy as the calculated building having building envelope parameters and technical systems parameters defined by the Czech legislation and standards.

Compared to the previous EPC methodology, instead of originally applied single value only criterion seven criterions have been newly introduced. This approach is taking into account the quality of building envelope, the efficiency of HVAC systems, the delivered energy and renewable as well as non-renewable primary energy.

The calculation methodology remained practically unchanged. The newly published technical report TNI 730331 [UMNZ 2013] contains typical values and information that shall be used in the calculation.

The technical report TNI 730331 has adopted and partly modified the calculation scheme from the German standard DIN V 18599 (Energetische Bewertung von Gebäuden) and compiled the complex calculation methods described in the standards:

- CSN EN 15316
- CSN EN 13779
- CSN EN 15193

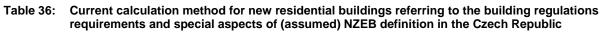
The annexes to this report provide the informative parameters as follows:

- Annex A typical values and the range of parameters describing system efficiency
- Annex B typical user profiles (ventilation, lighting, DHW, heat gains from interior appliances, period of occupancy)
- Annex C climatic data (monthly)
- Annex D rules for definition of energy consumption related area for the purpose of energy performance evaluation.

As of January 2013, the building permits for new constructions can be issued only providing the energy performance requirements stipulated in the Energy Management Act are fulfilled. The compliance must be validated by the state Energy inspection authority. This obligation also applies to the owners of existing buildings undergoing major refurbishments.

Status of NZEB definition for residential buildings in Czech Republic

According to the Czech definition the NZEB is a building with a very low energy demand and with high share of renewable energy used to cover this energy demand. The appropriate values for referential building are prescribed by the newly amended legislation.


Renovations to highly efficient (nZEB) standard are still not clearly defined. Once the nZEB detailed specification process in Czech Republic is amended, it is planned to tighten the primary energy requirements in the national building code. This is expected to result in the implementation of the most convenient energy efficiency measures and RES, lowering the overall consumption of the buildings in the long term.

The timeline for NZEB is stipulated by the Czech Energy Management Act. New residential buildings in the years 2018 - 2020 shall comply with the requirement of nearly zero energy consumption as of:

January 1st 2018 (for buildings with floor area larger than 1 500 m2)

January 1st 2019 (for buildings with floor area larger than 350 m2)

January 1st 2020 (for buildings with floor area smaller than 350 m2)

Е

			С	alculatio	n Meth	od Ne	w Building F	Regulation	s – (part 1)		
Cour	Calculation Method New Building Regulations Country CZ Czech Republic									08/2014	
National Requirements for New Residential Buildings									Special Aspects National NZEB Def	with regard to the finition	
Legis	slation	/ Stane	daro	ds					A provisory definition	ion of NZEB is in-	
Energy management Act 406/2000 Coll. novelized Decree 78/2013 Coll Czech standard CSN 730540 (Part1,2,3,4) latest versions Czech versions of EU Standards: CSN N ISO 6941 CSN EN ISO 13370 CSN EN ISO 13789 CSN EN ISO 13790 ČSN EN 15459 CSN EN 15603 TNI 730331								The Czech Housing (SFRB) is currently subsidy scheme w tion and energy po- ments.	g development fund y synchronizing the ith the new legisla- erformance require- NI 732309 will be		
	nation / C										
This e and fa	nergy pe	rformand assive h	ce le ouse	vel is more standard v	or less which is	equivale ca. 20 k	house is ca. 45 ht to Low Ener Wh/m2. The pe the next years	gy standard ercentage of			
Ener	gy Serv	/ices								ot included in the	
x	Heating)	x	DHW	Ap	pliances			calculation methodology.		
x	Cooling	I	x	Auxiliary	Ot	her:					
x	Ventilat		x	Lighting							
-	nation / (a system			not installed	l in the C	zech res	idential building	S.			
	ulation						alculation period		No deviation compared to the standard		
x	Calcula (buildin		ene	ergy need	for hea	iting	Year		calculation method		
x	Calcula	tion of d	elive	red energy (system)		Month/Y	ear			
Expla	nation / C	Commer	nts								
			Spe	cial Tech	nologi	es			No deviation compa calculation method	ared to the standard	
	al Systen								In case of surplus	alactricity with cap	
X				ith heat reco	overy					electricity with con- network negative	
X		l solar sy	·						delivered energy a demand is consider	and primary energy	
X		pecial sy				pumps	Balance period	Self-use		eu.	
On-Sit	e Electric	ity Produ	uctio	n	Feed-i	n Self-us	¹ to determine self-use ¹	considered for H-C-W-HE ¹			
X	On-site				X						
x	On-site PV x						monthly	H-C-W			
	Other e	nergy ge	enera	tion system:	S:						
•	 ¹ "self use" = parts of the electricity demand of the building is directly covered by the produced electricity; self use considered for "H-C-W-HE": Heating - Cooling - DHW - Household Electricity Explanation / Comments Renewable primary energy is included in the balance, i.e. make part of the energy 										
deliver	ed to the	e building	g. Tł		of energ	y is mult	plied by factor				

Table 36 (continuation)

			Calculation	s – (part 2)					
Cour	ntry	CZ	Czech Rep	ublic			Status	08/2014	
Natio	onal Re	quiren	nents for New	Special Aspects with (preliminary) National tion					
Туре	of Red	quirem	ents (new buil	dings)		Values calculated and values calculated for		
x	U-value	es of buil	ding elements		Primary	Non-renewable and	ing.	reference build-	
x	Heat tra transmi		pefficient by	x	energy	total	Calculated delivered energy related to calorific value of the fuel (in case if fuel is used)		
x	Energy	need for	r heating		Carbon d	ioxide emissions			
x	Deliver	ed energ	ЗУ	x	Other Efficiency of techni- cal systems EPC reporting Average U _{value} requirement			ement tightened	
Mean value. separa EPC ro U-valu EPC ro							compared to refurbish dard new buildings. Higher share of renewa in case of refurbishmer new buildings.	able energy than	
CO ₂ e	missions	conside	red in case of energ	gy audit					

Assessment of energy carriers in Czech Republic

The energy performance assessment for the purpose of EPC using non-renewable primary energy factors is stipulated by the Decree 78/2013 Coll. [CZ DEC 78]. The non-renewable and total primary energy factors for different energy carriers are defined in the Annex 3 to this legal document. These factors are derived from energy balance based on statistical data published by the Czech Statistical Office. The principal of assessment consists in comparison between evaluated building and reference building. The reference building parameters are also defined by the Decree 78/2013 Coll. [ibidem]. The primary energy conversion factors for reference HVAC systems are defined as follows:

Table 37: Primary energy conversion factor by HVAC system type

HVAC system	Primary energy conversion factor [-]
Heating	1.1
Cooling+ AC	3.0
DHW	1.1
Mechanical ventilation	3.0
Lighting	3.0
Auxiliary energy	3.0

In case of PV or cogeneration systems exporting energy outside the building borders the Decree defines the amount of negative primary energy that can be considered in the balance. If the above mentioned systems are not connected to the public network only the used energy is considered (the calculated monthly electric energy demand for HVAC and auxiliary energy.

Table 38: Czech primary energy factors

Label / type of factor	Total Primary Energy Factor	Non-Renewable Primary Energy Factor
Used for EPC rating		x
Used for building regulations requirements	x	X
Label (national language)	Faktor celkové primární energie dle Přílohy č.3 vyhlášky 78/2013 Sb.	Faktor neobnovitelné primární energie dle Přílohy č.3 vyhlášky 78/2013 Sb.
Description / type of weighting factor	Total non-renewable + renewable energy amounts, includes upstream energy ex- penditures (transportation, transformation) beyond national boundary	non-renewable energy amounts, includes upstream energy expenditures (transporta- tion, transformation) beyond national boundary
Factor is multiplied by delivered energy based on the	gross calorific value	gross calorific value
Reference	[Decree 78/2013 Coll]	[Decree 78/2013 Coll]
Natural gas	1.1	1.1
Heating oil	1.2	1.2
Firewood	1.1	0.1
Wood pellets	1.2	0.2
Electricity	3.2	3.0
Electricity production CHP	1.7	1.0
Electricity production PV system	1.0	0
District heating	1.1	1.0
District heating without CHP	1.1	1.0
District heating with 100 % CHP	1.1	0.1

The crucial discussion points are:

- methodology of calculation of the cost optimum solutions
- national conversion factors for primary energy (especially electricity). Conversion factors were derived from the energy mix of 2010; in the meantime many PV plants were put into operation. It is obvious that the impact of PV plants and CHP is not correctly considered. For the time being Czech Republic has one of the highest conversion factors for electricity among the EU countries (3.0) and very low conversion factor for heating with biomass (e.g. wooden pellets)
- use of parameters building envelope mean U-value and total non-renewable primary energy consumption

3.4.2 Integration of National Requirements for New Buildings and NZEB Standards in the Czech Residential Building Typology

According to our knowledge the idea of residential building typology has not been developed in the Czech Republic before TABULA project [STU-K 2011]. The national requirements for new buildings and NZEB standards were integrated to original TABULA typology. The age band 2011 onwards is presenting 3 different energy efficiency levels – standard minimum requirements, improved values corresponding to NZEB level and passive house requirements.

The current requirements for NZEB are as follows:

Requirements	SFH and TH	MFH		
Required mean U-value	≤ 0.25	≤ 0.35		
Energy need for heating	≤ 20 kWh/m²a*	≤ 15 kWh/m²a*		
Primary energy level A	80 kWh/m².a	80 kWh/m².a		
Primary energy level B	30 kWh/m ² a	30 kWh/m ² .a		

Table 39: Current requirements for NZEB by building type

*) According to the Czech methodology the energy need for heating does not include the energy need to cover the storage, emission and distribution losses. The solar gains, internal heat gains and heat recovery gains are deducted from the energy need for heating.

Classification scheme for the Czech residential building stock ("Building Type Matrix")

In the framework of the project EPISCOPE the building type matrix was upgraded and extended towards recently and presently built houses. The newly introduced age band is corresponding to the current legal and technical requirements, especially to the latest version of the Energy management Act 406/2000 Coll. [CZ LAW 406] and the Czech standard ČSN 73 0540-2:2011 [CSN 730540]. Figure 14 shows the above mentioned matrix.

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	national (Česká republika)	1920	generic (Standard)	CZ.N.SFH.01.Gen	CZ.N.TH.01.Gen	CZ.N.MFH.01.Gen	CZ.N.AB.01.Gen
2	national (Česká republika)	1921 1945	generic (Standard)	CZ.N.SFH.02.Gen	CZ.N.TH.02.Gen	CZ.N.MFH.02.Gen	CZ.N.AB.02. Gen
3	national (Česká republika)	1946 1960	generic (Standard)	CZ. N. SFH.03. Gen	CZ.N.TH.03.Gen	CZ.N.MFH.03.Gen	CZ.N.AB.03.Gen
4	national (Česká republika)	1961 1980	generic (Standard)	CZ. N. SFH.04. Gen	CZ.N.TH.04.Gen	CZ.N.MFH.04.Gen	CZ.N.AB.04.Gen
5	national (Česká republika)	1981 1994	generic (Standard)	CZ. N. SFH.05. Gen	CZ.N.TH.05.Gen	CZ.N.MFH.05.Gen	CZ.N.AB.05.Gen
6	national (Česká republika)	1995 2010	generic (Standard)	CZ.N.SFH.06.Gen	CZ.N.TH.06.Gen	CZ.N.MFH.06.Gen	CZ. N.AB. 06. Gen
7	national (Česká republika)	2011	generic (Standard)	CZ.N.SFH.07.Gen	CZ.N.TH.07.Gen	CZ.N.MFH.07.Gen	

Figure 14: Classification scheme ("Building Type Matrix") of the Czech residential building typology [STU-K 2014], now extended towards new buildings (age band 2011 onwards)

Three types of exemplary new buildings representing the latest construction year classes which are used for showcase calculations considering possible practical implementations of new buildings further to the Czech minimum requirements, the advanced (recommended) and so called target requirements are shown in the Table 40.

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		CZ.N.SFH.07.Gen	CZ.N.TH.07.Gen	CZ.N.MFH.07.Gen	
Number of dwellings		1	1	12	
Number of full storeys (conditioned)		2	2	4	
Number of directly attached neighbour buildings		0	1	0	
National reference area*	m²	170.0	170.0	1096.8	
TABULA reference area (conditioned floor area, internal dimensions)	m²	144.5	137.6	1052.4	

Table 40: Exemplary new buildings representing the latest construction year classes (2011 ...)

<CZ> Czech Republic

*) exterior dimensions considered for the national reference area

Building example: variants meeting three energy performance levels for new buildings

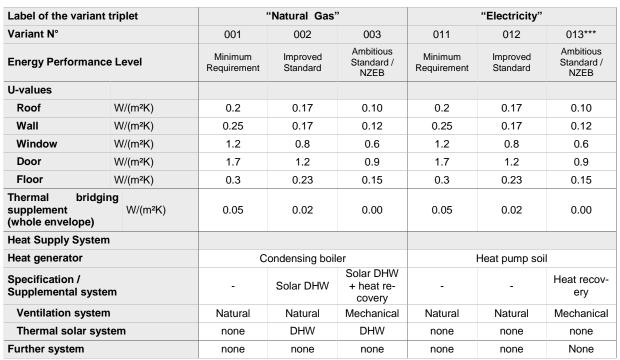
In the following table example variants of single family house are described in more detail. The same type of data for the other buildings can be found in the last updated version of the national typology brochure [STU-K 2014].

Table 41 shows the building parameters for different model configurations. According to the Czech mmethodology the choice of heating system does not impact the U values of the building envelope. Three energy performance levels are considered as follows:

1. Minimum requirements

Combination of building envelope with two types of supply systems complying with currently valid minimum requirements stipulated by the decree 78/2013 Coll. [CZ DEC 78] and the Czech standard ČSN 73 0540-2:2011 [CSN 730540].

2. Improved Standard


Improved standard is a set of middle of range U values of the building envelope in combination with two types of heating. This set up of values would comply with the NZEB definition if mechanical ventilation with heat recovery is applied, which is usually not the case in current practice.

3. Ambitious standard (NZEB)

Combination of ambitious U values from the Czech standard with two types of supply systems is corresponding to current NZEB definition and the definition of passive house. The requirement mechanical ventilation with heat recovery must be fulfilled. This level qualifies for a subsidy of 20,000 EUR from the subsidy programme "Saving scheme" in case of construction of new single family or terraced house.

The two heating systems selected to demonstrate the different energy performance levels were condensing gas boiler and electric heat pump (soil-water sys). The DHW is produced with either the condensing boiler or condensing boiler with solar collector or with the heat pump.

The ambitious level has a heat recovery system.

Table 41: Exemplary new single family house (SFH) – definition of variants

Building display sheet of the exemplary SFH (CZ) is presented below, see Figure 15. Further examples are available in [STU-K 2014].

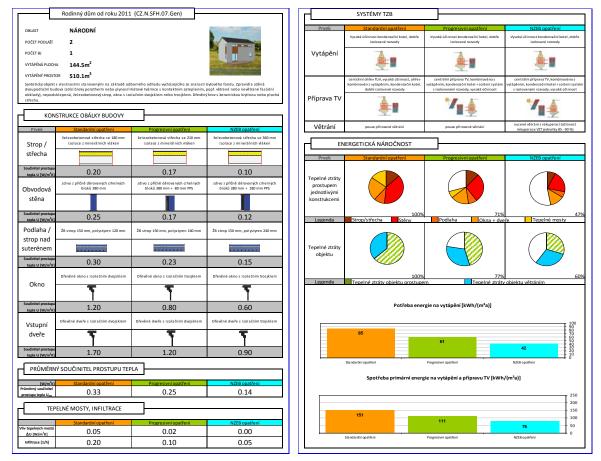


Figure 15: "Building Display Sheet" of the exemplary SFH <CZ>

Exemplary SFH – Results of the energy balance calculation; Czech national calculation meth-odology [UNMZ 2013] Table 42:

Variant N°		001	002	003	011	012	013
Label of the variant triplet			"Natural gas	"	"Electricity-heat pump"		
Variation level		Minimum Requirement	Improved Standard	Ambitious Standard / NZEB	Minimum Requirement	Improved Standard	Ambitious Standard / NZEB
Energy standard		[CZ DEC 78]	[CZ DEC 78]	[CZ GS 2014]	[CZ DEC 78]	[CZ DEC 78]	[CZ GS 2014]
Calculation method		TN	I 73 033 [UNMZ 2	2013]	TNI	73 0331 [UNMZ	2013]
National reference area*	m²	170.04	170.04	170.04	170.04	170.04	170.04
Thermal transfer coefficient by transmission. related to envelope area	W/(m²K)	0.33	0.25	0.14	0.33	0.25	0.14
Relation to requirement		83 %	71 %	54 %	83 %	71 %	54 %
Relation to reference standard		150 %	114 %	64 %	150 %	114 %	64 %
Energy need for heating	kWh/(m²a)	77	52.5	14**	77	52.5	14**
Delivered energy							
Fossil fuels	kWh/(m²a)	86.2	61.1	21.5	0	0	0
Renewable fuels	kWh/(m²a)	0	0	0	0	0	0
Electricity	kWh/(m²a)	8	8	10.5	31.4	25.2	18.1
Primary energy demand	kWh/(m²a)	120.42	92.8	57.25	100.48	80.64	57.9
Relation to requirement		134 %	103 %***	95 %****	112 %	89.6 %	96.5 %
Funding level:		0	0	20000 EUR	0	0	20000 EUR

*) exterior dimensions considered for the national reference area

***) heat recovery
***) B1 requirement 90 kWh/(m²a) of primary energy
****) B2 requirement 60 kWh/(m²a) of primary energy

TABULA

EPISCOPE

TABULA calculation results for all exemplary buildings

Table 43 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for three exemplary buildings (SFH, TH and MFH) in three different energy efficiency standards.

PE

C C	onu	tions)															
Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
	01	Minimum Requirement	0.90	85	0	85	84	10	23	110	0	0	0	10	0	0	0
SFH	02	Improved Standard	0.60	61	0	61	59	10	23	70	0	0	0	11	0	0	0
CZ.N.SFH.07. Gen	03	Ambitious Standard / NZEB	0.38	42	21	21	21	10	23	31	0	0	0	13	0	0	0
	11	Minimum Requirement	0.90	85	0	85	93	10	23	0	0	0	0	39	0	0	0
	12	Improved Standard	0.60	61	0	61	69	10	23	0	0	0	0	33	0	0	0
	13	Ambitious Standard / NZEB	0.38	42	21	21	30	10	23	0	0	0	0	25	0	0	0
TH CZ.N.TH.07.Gen	01	Minimum Requirement	0.80	78	0	78	77	10	23	102	0	0	0	10	0	0	0
	02	Improved Standard	0.53	54	0	54	53	10	23	64	0	0	0	11	0	0	0
	03	Ambitious Standard / NZEB	0.33	36	20	16	17	10	23	27	0	0	0	13	0	0	0
	11	Minimum Requirement	0.80	78	0	78	86	10	23	0	0	0	0	37	0	0	0
	12	Improved Standard	0.53	54	0	54	63	10	23	0	0	0	0	31	0	0	0
	13	Ambitious Standard / NZEB	0.33	36	20	16	26	10	23	0	0	0	0	24	0	0	0
	01	Minimum Requirement	0.52	64	0	64	70	15	23	95	0	0	0	4	0	0	0
MFH	02	Improved Standard	0.34	44	0	44	49	15	23	74	0	0	0	4	0	0	0
	03	Ambitious Standard / NZEB	0.22	30	20	10	16	15	23	40	0	0	0	7	0	0	0
	11	Minimum Requirement	0.52	64	0	64	70	15	23	0	0	0	0	4	98	0	0
CZ.N.MFH.07.Gen	12	Improved Standard	0.34	44	0	44	49	15	23	0	0	0	0	4	76	0	0
	13	Ambitious Standard / NZEB	0.22	30	20	10	16	15	23	0	0	0	0	7	41	0	0
Explanation of Q		ties (TABULA Data															
h_Transmission		W/(m ² K) floor area	related he	eat transf	er coeff	icient by	transmis	ssion / in	dicator f	or energ	y quality	of build	ing enve	lope (co	mpactne	ss + insi	ulation)
q_h_nd kWh/(m ² a) energy need for heating																	
q_ve_rec_h_usable kWh/(m²a) usable contribution of ventilation heat recovery																	
q_h_nd_net		kWh/(m ² a) net energy	need for	heating	(q_h_nc	I - q_ve_	rec_h_u	sable)									
q_g_h_out		kWh/(m ² a) generated	heat hea	ting syst	em (net	energy r	need + st	orage lo	sses + c	listributic	on losses	5)					
q_w_nd		kWh/(m ² a) net energy	/ need do	mestic h	ot water												

Table 43: Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)

 q_del_sum_gas,
 ..._oil,

 ..._coal,
 ..._bio,

 ..._dh,
 ..._other,

 q_exp_sum_el
 kWh/(m²a)

 sum delivered energy, energy carrier gas,

 ..._dh,
 ..._other,

 ..._dh,
 ...

q_g_w_out

kWh/(m²a) generated heat dhw (net energy need + storage losses + distribution losses)

sum delivered energy, energy carrier gas, oil, coal, biomass, electricity, district heating, other energy carriers

3.4.3 Sources / References Czech Republic

Table 44: Sources / References Czech Republich

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[CSN 730540]	Norma ČSN 73 0540 , část 1 až 4 Tepelná ochrana budov.	Czech standard on the thermal protection of build- ings defines the terms used in the field of thermal building technology. Definition of variables, their symbols and units, used in ČSN 73 0540 -2, 3 and 4, describing the propagation of heat, moisture and air through building materials and construc- tion, as well as the state of indoor and outdoor environments.
[CZ DEC 78]	Vyhláška 78/2013 Sb.	Decree on the energy performance of buildings – Czech national regulation to implement the EPBD II Directive to the Czech building construction practice.
[CZ GS 2014]	Směrnice č 1-2014. Nová zelená úsporám	New Green savings Directive Czech national regulation defining the rules of subsidy programme administered by the State Environmental Fund of the Czech Republic. This subsidy programme is focused on energy savings
[CZ LAW 406]	Zákon o hospodaření s energií. 406/2000 Sb	and renewable energy sources in family houses. Energy Management Act Czech national regulation transposing the EPBD II Directive to the Czech legistation.
[EPBD 2010]	Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Online available: <u>http://eur-lex.europa.eu/legal- content/EN/ALL/?uri=CELEX:32010L0031</u> [2014-05-15]	EC regulation
[MPO EF 2011]	Budovy s téměř nulovou potřebou MPO Efekt 2013	Nearly zero energy buildings. Guidelines, defini- tions of parameters.
MPO EF 2013[]	Referenční budovy podle metodického rámce MPO Efekt 2013	Referential buildings according to Czech methodo- logical framework. Guidelines.
[STU-K 2011]	STU-K (2011): Příručka typologií obytných budov s příklady opatření ke snížení jejich energetické náročnosti http://episcope.eu/fileadmin/tabula/public/docs/bro chure/CZ_TABULA_TypologyBrochure_STU-K.pdf	National typology brochure for Czech Republic, developed during the IEE Project TABULA
[STU-K 2014]	STU-K (2014): Příručka typologií obytných budov s příklady opatření ke snížení jejich energetické náročnosti	National typology brochure for Czech Republic, developed during the IEE Project EPISCOPE
[UNMZ 2013]	Technická normalizační informace (TNI 73 0331) "Energetická náročnost budov - Typické hodnoty pro výpočet". Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2013.	Technical standardization information directive (TNI 73 0331) "Energy Performance of Buildings – Typical values for calculation". Supporting docu- ment that defines typical values that shall be used for calculation of standardized usage of a building.

3.5 <DE> Germany

(by EPISCOPE partner IWU)

In the mid-1980s buildings with a much lower energy consumption than ordinary buildings were introduced in the German buildings market. The concepts based on experiences reported from Scandinavian countries where buildings with thick insulation and windows with 3 and more panes were realised (the German versions of these dwellings were then known as "Schweden-Standard" = "Sweden Standard"). In the early 1990s some federal states raised funding programmes to support these building concepts which were called "low energy houses" ("Niedrigenergiehäuser") [Fingerling 1996]. In the same period the "passive house" concept was developed in the framework of a research project and a first prototype was built [Feist 2003]. In the following years the concept was refined, components needed for passive houses were introduced in the market and quality assurance concepts have been developed. Until now, more than 20,000 passive house dwellings have been built in Germany [iPHA].

In contrast, the level of national requirements has made up ground only slowly. The minimum energy standard of today is roughly corresponding to the level of what was promoted as "low energy house" in the early 1990s. Nevertheless, the actual energy levels are quite better in the average – not least because of the national funding scheme of the KfW Bank, which has already been implemented more than 10 years ago and supports the construction of energy efficient buildings on different levels.

Nearly zero-energy buildings (NZEBs) have not yet been officially defined, but there are reasons to assume that the best standard currently supported by the KfW banking group may be an appropriate benchmark.

3.5.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Germany

Since the first thermal regulation became law in 1978, several tightenings and changes of the legal requirements for new buildings took place. A revision of the German Energy Saving Ordinance came into force in May 2014. As a next step towards nearly zero-energy buildings, it includes a tightening of the requirements for new buildings in 2016.

Minimum requirements for new residential buildings in Germany

The current energy requirements for new buildings have been introduced in the framework of the energy saving ordinance ("Energieeinsparverordnung", short EnEV) in 2009. In 2014 a recast came into force including some methodical revisions but no considerable change of the requirement level. However, a future 25 % reduction of the primary energy demand has been fixed for January 2016.

For all new buildings, primary energy requirements are specified by means of a "reference standard" of building and system components which need to be applied to the geometrical model of the given / planned new building. Therefore, the energy saving ordinance includes a complete description of parameters (U-values, supply system type and quality) which is applied to calculate a building-related primary energy requirement. Of course, other variants are allowed as well – as far as the primary energy demand is not exceeding that of the reference standard. As a second requirement maximum values of the heat transfer coefficient by transmission (related to the thermal envelope area) must be considered.

The improved energy performance level of 2016 is, however, based on the same reference standard as that of 2009. But then the maximal primary energy demand will be 75 % of that

In addition to the energy saving ordinance "EnEV", the "Renewable Energies Heat Act" (RES) requires a certain share of renewable energy sources to cover the energy need for heating and for domestic hot water. The exact ratio depends on the chosen energy source; the given default solutions vary in share from 15 %, e.g., in the case of solar heat, to 50 % in the case of heat pumps using the heat source ground (see also [Schettler-Köhler / Kunkel 2012]). If this cannot be fulfilled the maximum primary energy demand, given by the energy saving ordinance, is reduced by 15 %.²¹

German calculation method to comply with new building regulations for residential buildings

In the case of residential buildings two alternative calculation methods can be used:

(1) DIN V 18599:2011 [DIN V 18599]

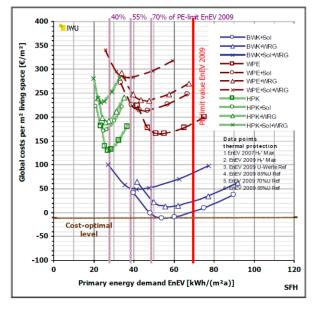
This standard consists of a complete scheme for the calculation of residential and nonresidential buildings and includes calculation modules for heating, cooling, airconditioning and ventilation systems and a primary energy based energy carrier assessment. Multi-zone calculations are possible but only obligatory for non-residential buildings.

(2) DIN V 4108-6:2003 + 4701-10:2003 (A1: 2012-07) [DIN V 4108-6 / 4701-10]

These two standards have already been introduced in the context of the energy saving ordinance 2002 [EnEV 2002] and are designed to calculate energy balances of the heat need (DIN V 4108-6) and the primary energy demand (DIN V 4701-10) of residential buildings. The calculation scheme is much less complex than DIN V 18599 and also includes default values to be used if details of a component are not known. In contrast to DIN V 18599 it is also possible to make a simplified calculation of the supply system by use of tabled values for heat generation, storage, distribution and emission. A simple calculation sheet to get an overview of the system efficiency is also part of the standard.

The primary energy factors to be used are the same for both methods (see section "Assessment of energy carriers in Germany").

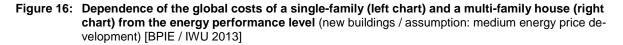
²¹ Lowering the maximum primary energy demand for buildings without RES has a strange effect: If for example a new building with a central heating system based on natural gas is built, a variant including a thermal solar system will consume more non-renewable resources than a building without thermal system. The reason is that compensation between energy saving measures and solar systems is already included in the standard EPC calculation. A further consideration by adjusting the primary energy limit leads to double counting of RES measures.

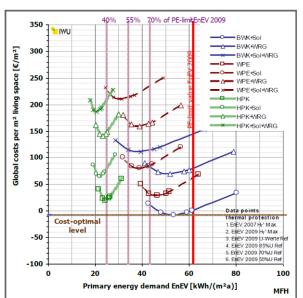

Status of NZEB definition for residential buildings in Germany

Nearly Zero-Energy Buildings (NZEBs) are addressed in the Energy Saving Act "Energieeinsparungsgesetz" from 2013 [EnEG 2013]. In this law a further amendment of the energy saving ordinance is prescribed before 2019 (with a regulation starting from January 2021). However, an official definition of the NZEB standard is not included and has also not yet been published by the German government.

Despite the lack of an official definition, the "KfW-Effizienzhaus 40" seems to be an appropriate benchmark for the definition of the NZEB level for residential buildings in Germany. It has already been used as a synonym for the future German new built NZEBs in scenario analyses for the German building sector performed on behalf of the Federal Government [IWU 2013a].

In [IWU 2012b] and [BPIE / IWU 2013] it was shown that the current national requirements (EnEV 2009) are not yet reaching the cost optimal level (see Figure 16) – but this will be attained by the next step, decided for January 2016 (-25 % primary energy demand). So, it is foreseeable that the global costs will rise when the level of 40 % of the minimum requirements (primary energy demand) is targeted (as long as no extreme increases in energy prices occur).


However, since its introduction in 1976 the Energy Saving Act [EnEG 2013] demands that requirements of the corresponding ordinance must be economically justifiable (usually interpreted: must not impose a rise of global costs for house owners). This regulation (resp. its current interpretation) appears as a contradiction to the obligation of an NZEB introduction in the year 2021 (see above). It is currently unclear how these disaccording regulations in the same law will be overcome.



BWK ("Brennwertkessel"): natural gas condensing boiler

WPE ("Wärmepumpe elektrisch"): electrical heat pump, heat source ground HPK ("Holzpelletkessel"): wood pellets boiler

Sol ("Solaranlage"): including thermal solar DHW system WRG ("Wärmerückgewinnung"): including ventilation system with heat recovery

As already pointed out in the introduction of the "<DE> Germany" chapter the targeted level of NZEB is not only theoretical but has been implemented in practice for numerous years. The "KfW-Effizienzhaus 40" has been promoted as one of several levels by the main national subsidy program of the "KfW Group", a bank owned by the German government, specialised in reduced interest loans and public subsidies. In 2012 already 50 % of the newly built residential dwellings received a funding from KfW and thus had a higher energy performance than the national minimum requirements. The shares of the three KfW standards are shown in the table below. Accordingly, about 4 % of the newly constructed residential buildings supposedly correspond to a possible future NZEB level [IWU 2013c].

4 %

Table 45. Shale of Kiw Id			
Name of the KfW funding level	Primary energy demand with respect to national minimum requirements (EnEV 2009/2014)	Share of funded new buildings 2012 (100% = all new buildings funded by the KfW pro- gramme)	Estimated share of new buildings 2012 (100 % = all new residen- tial buildings in Germany)
"KfW-Effizienzhaus 70"	70 %	73 %	37 %
"KfW-Effizienzhaus 55"	55 %	19 %	10 %

Table 15. Share of KfW funding levels [IWI1 2013c]

"KfW-Effizienzhaus 40"*

*) in EPISCOPE it is assumed that the NZEB standard will be comparable to the "KfW-Effizienzhaus 40", see text

40 %

The estimated fractions related to all new built residential houses in Germany are a rough estimate according to the above mentioned approximate 50 % share of the KfW funding among new buildings. Besides, the numbers might even be larger because not all new buildings which are erected according to a KfW level are necessarily funded by the KfW.

8 %

In addition to these standards the German government has introduced in 2012 the standard "Effizienzhaus Plus" ("Efficiency House Plus") which includes on-site electricity production as an obligatory element. The respective promotion programme requires an "energy surplus", meaning that the annual electricity production must exceed the electricity demand for heating, DHW and household electricity. At present this standard has still an experimental character, i.e. only a small number buildings is currently funded [BMVI 2014].

Further aspects of the NZEB discussion in Germany can be found in the working paper of the new German Typology Brochure [IWU 2014a].

Table 46: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in Germany

			С	alculation	Metho	d New	Building F	Regulation	s – (part 1)		
Cou	ntry	DE	DE Germany						Status	04/2014	
Natio	National Requirements for New Residential Buildings							Special Aspects wi assumed German			
Germa Germa Germa	an Renew	Saving able En Saving	Ordi ergie Act 2	nance 2014 (s Heat Act 20 2013 (EnEG 2	011 (EEW		2011)		No official German NZEB definition until now. In EPISCOPE it is assume that the NZEB standard will be comp. rable to the "KfW efficiency house 40 (60 % below current primary energy requirements). This level of energy		
	N V 18599 N V 4108-		+ 470)1-10:2003 (A	1:2012-0	17)			performance has be national funding sch Bank since 2010.		
The co	y demand	el of requ will be i	uirem reduc	ed by 25 % a	and the fa	bric loss	009. In 2016 th es by 10 %. Si y renewable ei	nce 2009 it			
Ener	gy Serv	/ices							The proof of the "Eff		
x	Heating	1	x	DHW	Арр	liances			standard is methodic German calculation		
х	Cooling	ļ	x	Auxiliary	Othe	ər:			buildings.		
x	Ventilat	ion		Lighting					Appliances and light ered in the regular E		
	nation / C			not installed	in Germa	n resider	ntial buildings.		but in the optional calculation proce- dure for "Efficiency Houses Plus" (se text section above this table).		
Calc	ulation	Proce	dur	е		Cal	culation period	ł	No deviations for "Effizienzhaus 40"		
x	Calcula (buildin		energ	y need for he	ating		Month		proof.		
х	Calcula	tion of d	lelive	red energy (s	system)		Year / Mo	nth*			
•	nation / 0			IN V 18599: '	Month"						
Cons	siderati	on of S	Spe	cial Techr	nologie	s			No deviations for "E	ffizienzhaus 40"	
Therm	nal Systen	าร							proof. Calculation procedu	re for "Efficiency	
x	Ventilat	ion syste	em w	ith heat recov	/ery				Houses Plus" (see a	above) is consider-	
x	Therma	l solar s	ysten	n					ing PV coverage of ity (HE), balance is		
	Other s	pecial sy	/stem	IS:					basis, and feed-in of	f surplus electricity	
On-Si	te Electric	ity Prod	uctio	ſ	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹	is part of the require	ment.	
x	On-site	CHP			х		-	-			
x	On-site PV x					х	Month	H-C-W			
	Other energy generation systems:										
	¹ "self use	e" = parts o	f the e	ectricity demand	of the buildir	ng is directly	covered by the pro	oduced electric-			
F 1	•			I H-C-W-HE": He	aung - Cool	ing - DHW -	Household Electric	uty			
Photo the pr is dire	oduced el ectly cove	currently ectricity red – no	/ inclu on-s o bon	ite and the c	alculated ed energ	monthly	rovisions are t electrical ener en (different a	rgy demand			

Table 46 (continuation)

			Calculation	Building Regulation	s – (part 2)				
Cour	ntry	DE	Germany				Status	04/2014	
National Requirements for New Residential Buildings							Special Aspects with assumed German NZ		
Туре	of Red	quirem	ents (new buil	dings)		No deviations for "Effiz	ienzhaus 40"	
	U-value	es of buil	ding elements		Primary		proof. Requirement type of "E	fficiency Houses	
x	x Heat transfer coefficient by transmission				energy	non-renewable	Plus" (see above) is different: negative delivered energy and primary energy		
	Energy	need for	heating		Carbon d	ioxide emissions	demand.		
	Deliver	ed energ	У	x	Other	share of renewables*			
	nation / (
^ depe	* depending on heat supply technology								
in EPC	Cs (for inf	ormation		asis for		emissions are included ation by the recently			

Assessment of energy carriers in Germany

The assessment of the energy performance of buildings by use of non-renewable primary energy factors (related to delivered energy) derived from [GEMIS] has been in use for more than 15 years in Germany (see e.g. energy certificate procedure in [IWU 1997]). Today the basis of the primary energy factors given in the German standards is still GEMIS (Global Emissions Model for integrated Systems), a public domain life-cycle and material flow analysis model and database which is maintained and further developed continuously [GEMIS].

Tabled values of total and non-renewable primary energy factors are published in DIN V 18599-1. However, the German energy saving ordinance (EnEV) prescribes to use values for electricity deviating from the DIN standard. An overview of the values of DIN / EnEV is given in Table 47.

On-site photovoltaic systems are considered in the primary energy demand of the EnEV procedure in the extent that the calculated monthly electrical energy demand for heating, DHW and auxiliary energy is directly covered. If for a month the electricity production exceeds the electricity demand this surplus is summed up as exported electricity. A bonus for the exported fraction of the produced electricity is not foreseen. This principle was also applied when calculating the exemplary buildings in the next chapter by means of the TABULA method (however, the TABULA method is not fixed to monthly balance of onsite supply and demand, since a precalculation can be performed by using arbitrary lengths of compensation steps).

In the special promoting programme "Efficiency House Plus" a different approach for considering PV systems is followed. In addition to space heating and DHW also household electricity (HE) can be taken into account. In this case the balance is done on a yearly basis and the feed-in of surplus electricity into the grid is considered as a bonus in the energy balance. The requirement is that the primary energy demand must be negative.

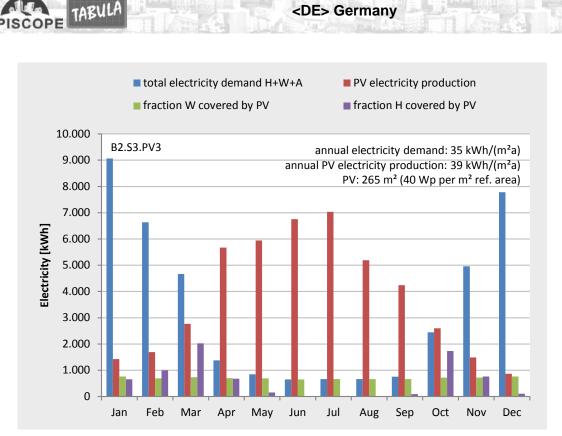


Figure 17: Monthly compensation by the German EnEV calculation method

In Table 47, the values used in the German EnEV calculation procedure are displayed in the second column. The table also shows the GEMIS values integrated in the TABULA database as a second set of assessment factors. In case of electricity the values differ due to the following reasons:

- Electricity production by PV systems: PV electricity is considered as one of the energy carriers. The factors of the column "GEMIS + IWU" are including the energy effort for production and installation of PV systems in the same way as for the other energy carriers. Values are applicable if electricity from distinct PV systems is considered to supply a part of the delivered energy demand of a building.
- Electricity production by CHP systems: According to the German EnEV the produced electricity is considered by a "bonus" in the total primary energy assessment that allocates the complete efficiency gain of CHP to the heat supply system and leaves the efficiency of the electric grid unchanged. The primary energy factor of 2.8 is even higher than the factor of the average grid due to the approach that the electricity produced by CHP is considered to replace a special segment of the German power plants with the mentioned primary energy factors.

For the values on the right side of the table ("GEMIS + IWU") a more balanced approach is followed partitioning the efficiency gain equally to the electricity and to the heat sector [Diefenbach 2002] [IWU 2014b] (see also discussion points in the next section).

Label / type of factor	Total Primary Energy Factor	Non-Renewable Primary Energy Factor	Total Primary Energy Factor GEMIS + IWU	Non-Renewable Primary Energy Factor GEMIS + IWU	Greenhouse Gas Emissions (CO2 Equiva- lent) GEMIS + IWU
used for EPC rating		x			
used for building regula- tions requirements		x			
Label (national language)	Primärenergiefaktor gesamt nach DIN V 18599- 1:2011-12	Primärenergiefaktor nicht-erneuerbar nach DIN V 18599- 1:2011-12	kumulierter Ener- gieaufwand ge- samt GEMIS	kumulierter Ener- gieaufwand nicht- regenerativer Anteil GEMIS	Treibhausgase (CO2-Äquivalent)
Description / type of weighting factor	non-renewable + renewable energy amounts, includes upstream energy expenditures (transportation, transformation) beyond national boundary	non-renewable energy amounts, includes upstream energy expendi- tures (transporta- tion, transforma- tion) beyond na- tional boundary	non-renewable + renewable energy amounts, includes upstream energy expenditures (transportation, transformation) beyond national boundary	non-renewable energy amounts, includes upstream energy expendi- tures (transporta- tion, transforma- tion) beyond national boundary	greenhouse gas emissions ex- pressed in carbon dioxide equiva- lents; reference period 100 years; includes upstream emissions beyond the national boundary
Factor is multiplied by delivered energy based on the	net calorific value	net calorific value	net calorific value	net calorific value	net calorific value
Reference	[DIN V 18599:2011]	[DIN V 18599:2011]	[IWU 2014c] based on GEMIS version 4.9 + [IWU 2014b] (CHP)	[IWU 2014c] based on GEMIS version 4.9 + [IWU 2014b] (CHP)	[IWU 2014c] based on GEMIS version 4.9 + [IWU 2014b] (CHP)
Unit	[-]	[-]	[-]	[-]	[g/kWh]
Natural gas	1.1	1.1	1.13	1.13	239
Heating oil	1.1	1.1	1.16	1.15	313
Firewood	1.2	0.2	1.01	0.01	11
Wood pellets	1.2	0.2	1.08	0.06	18
Electricity	2.8	2.4 / 1.8 *	2.71	2.19	631
PV System: electricity production	1.0	0.0	1.25 ***	0.23 ***	62 ***
CHP system: electricity export to the grid	2.8	2.8	1.90 **	1.90 **	346 **
District heating	1.3	1.3	1.32	1.08	****
District heating without CHP	1.3	1.3	****	****	****
District heating with 100 % CHP	0.7	0.7	****	****	***

Table 47:	German primary energy and	greenhouse gas emission factors
-----------	---------------------------	---------------------------------

*) deviation of EnEV 2014 from DIN V 18599, starting from January 2016

**) depending on size of CHP engine, here determined for gas-fuelled CHP engine with 50 kW electrical power, see [IWU 2014b]

***) Electricity production PV system: PV electricity is considered as one of the energy carriers. Values are applicable if electricity from distinct PV systems is considered to supply a part of the delivered energy needed by the building; including energy effort for production and installation of the PV system; assumption: polycrystalline cells; standard values for other types: amorphous PV cells: 0.27 (81 g/kWh); monocrystalline PV cells 0.47 (127 g/kWh)

****) not yet determined

There are some methodological points for discussion in Germany, especially in the context of produced electricity and assessment of renewables:

• PV electricity production:

TABULA

EPISCOPE

The general approach of the EnEV regulations is to account for the directly used fraction of the produced electricity (bonus identical to the avoided electricity supply by the grid) and to disregard the surplus which is considered as export to the grid.

However, the concept of the "Effizienzhaus Plus" ("Efficiency House Plus") promoted by the German government is deducting the total annual energy production from the electricity demand and is setting a surplus (export to the grid) as the criterion for reaching this standard. Since the main energy production is occurring in summer and the main energy demand in winter this it appears doubtful if this approach should be generalised for a NZEB definition.

Moreover, it can be discussed if the sum of the monthly compensations is not still too optimistic: If PV is considered as a normal "energy saving technology" it should be able to cover the instantaneous energy demand (in a similar way as thermal solar systems) – which would require a consideration of much smaller time steps of compensation than month.

• Combined Heat and Power (CHP):

According to the DIN/EnEV scheme a primary energy bonus is given for electricity produced by CHP devices which is derived from the average (or incremental efficiency) of the national power plant sector. The concept allocates the energy efficiency gain attained by cogeneration only to the heat production. With this viewpoint the efficiency of the national electricity power supply sector would not be improved by installation of CHP. A further problematic point of the approach is that in some cases it results in Zero or negative primary energy factors for produced electricity (in the EnEV practice negative values are simply cut to Zero). This single-sided allocation is currently discussed among German experts. For the TABULA values a more balanced approach is followed partitioning the efficiency gain equally to the electricity and to the heat sector ([Diefenbach 2002], [IWU 2014b], the latter paper including a comparison and of the different approaches).

Assessment of biomass:

The standard assessment in Germany is the non-renewable primary energy. In consequence the use of biomass only contributes to a small extent to the overall energy demand and is in competition to energy saving technologies as insulation or heat recovery. On the other hand biomass is – although renewable – also a very limited resource. In the buildings regulations this is accounted for by a supplemental requirement on the energy quality of the fabric. But the rating of the building by use of non-renewable energy (basis for KfW funding) is not reflecting this point. One suggestion to deal with this question is to use the primary energy factors based on non-renewable energy only up to certain amount of floor area related delivered energy demand (e.g. 30 kWh/(m²a) and to apply the total primary energy factors for the exceeding values [Diefenbach 2002]. Another option would be to set requirements to both – to the non-renewable and to the total primary energy demand [Zirngibl 2014].

• Usage of energy performance calculations for energy-efficient operation of the building:

A further topic is if and how the energy demand determined by building regulations calculation can be compared with actual measured consumptions during the usage phase. Experiences from pilot projects show that the more complex the technologies for supply of energy efficient buildings are the more difficult it seems to be to achieve a function as desired and thus to attain the targeted consumption values and indoor conditions. So the question arises if the building's energy balance calculation could be used during the usage of the building to verify adequate operation.

3.5.2 Integration of National Requirements for New Buildings and NZEB Standards in the German Residential Building Typology

A first version of the national residential building typology was developed in 1990 on the basis of energy saving audit reports and was applied during scenario analyses to determine the energy saving potentials of the German building stock [IWU 1990]. The German building typology was regularly updated according to new developments. Also a number of regional building typologies have been developed during the past two decades for German cities or provinces (for more details see [IWU 2012a]). Apart from scenario analyses and energy advice brochures, the regional and national building typologies are also used by a number of software applications as a set of example buildings.

During the TABULA project the differentiated national version of the classification scheme ("building type matrix") was transformed into the common TABULA concept [IWU 2011]. The datasets of existing buildings were adjusted and transferred to the TABULA data structure [IWU 2012a].

Classification scheme for the German residential building stock ("Building Type Matrix")

During the IEE Project EPISCOPE the building type matrix was extended towards new buildings, reflecting the current legal requirements (EnEV 2009/2014). Figure 18shows the respective matrix. Three further examples buildings have been identified which are now used for showcase calculations reflecting possible practical implementations of new buildings according to the national minimum requirements and future NZEB standards (Table 48).

<DE> Germany

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	National (nicht regional spezifiziert)	1859	Generic (Basis-Typ)	DE.N.SFH.01.Gen		DE.N.MFH.01.Gen	
2	National (nicht regional spezifiziert)	1860 1918	Generic (Basis-Typ)	DE.N.SFH.02.Gen	DE.N.TH.02.Gen	DE.N.MFH.02.Gen	DE.N.AB.02.Gen
3	National (nicht regional spezifiziert)	1919 1948	Generic (Basis-Typ)	DE.N.SFH.03.Gen	DE.N.TH.03.Gen	DE.N.MFH.03.Gen	DE.N.AB.03.Gen
4	National (nicht regional spezifiziert)	1949 1957	Generic (Basis-Typ)	DE.N.SFH.04.Gen	DE.N.TH.04.Gen	DE.N.MFH.04.Gen	DE.N.AB.04.Gen
5	National (nicht regional spezifiziert)	1958 1968	Generic (Basis-Typ)	DE.N.SFH.05.Gen	DE.N.TH.05.Gen	DE.N.MFH.05.Gen	DE.N.AB.05.Gen
6	National (nicht regional spezifiziert)	1969 1978	Generic (Basis-Typ)	DE.N.SFH.06.Gen	DE.N.TH.06.Gen	DE.N.MFH.06.Gen	DE.N.AB.06.Gen
7	National (nicht regional spezifiziert)	1979 1983	Generic (Basis-Typ)	DE.N.SFH.07.Gen	DE.N.TH.07.Gen	DE.N.MFH.07.Gen	
8	National (nicht regional spezifiziert)	1984 1994	Generic (Basis-Typ)	DE.N.SFH.08.Gen	DE.N.TH.08.Gen	DE.N.MFH.08.Gen	
9	National (nicht regional spezifiziert)	1995 2001	Generic (Basis-Typ)	DE.N.SFH.09.Gen	DE.N.TH.09.Gen	DE.N.MFH.09.Gen	
10	National (nicht regional spezifiziert)	2002 2009	Generic (Basis-Typ)	DE.N.SFH. 10.Gen	DE.N.TH. 10.Gen	DE.N.MFH. 10.Gen	
11	National (nicht regional spezifiziert)	2010 2015	Generic (Basis-Typ)	DE.N.SFH. 11.Gen	DE.N.TH.11.Gen	DE.N.MFH. 11.Gen	
12	National (nicht regional spezifiziert)	2016	Generic (Basis-Typ)	DE.N.SFH. 12.Gen	DE.N.TH. 12.Gen	DE.N.MFH. 12.Gen	

Figure 18: Classification scheme ("Building Type Matrix") of the German residential building typology [IWU 2014a], now extended towards new buildings

Building Size Class		SFH	ТН	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
Picture		DE.N.SFH.11.Gen	DE.N.TH.11.Gen	DE.N.MFH.11.Gen	
Number of dwellings		1	1	17	
Number of full storeys (conditioned)		2	2	4	
Number of directly attached neighbour buildings		0	1	0	
National reference area (Gebäudenutzfläche A _N nach EnEV / synthetical quantity)	m²	265	239	1458	
TABULA reference area (conditioned floor area, internal di- mensions)	m²	187	196	1305	

 Table 48:
 Exemplary new buildings representing the latest construction year classes (2010 ... 2015; 2016 ...)

Building example: variants meeting three energy performance levels for new buildings

In the following the exemplary multi-family house is demonstrated in more detail. Comparable information for the other buildings can be found in the updated national typology brochure [IWU 2014a].

Table 49 shows the building features for different model cases. The three energy performance levels predetermined by the TABULA concept are specified as follows:

Energy Performance levels

- "Minimum Requirements" ("Mindestanforderung EnEV 2009 / 2014") Combination of building and supply system that exactly complies with the current minimum requirements (EnEV 2009 / 2014²²)
- 5. **"Improved Standard"** ("KfW Effizienzhaus 70") Level of "KfW-Effizienzhaus 70", the most moderate of the three standards funded by the national grant programme; new requirements EnEV 2016 will almost attain this energy performance level;

"Ambitious Standard / NZEB" ("Niedrigstenergiehaus (KfW Effizienzhaus 40)")

Level of "KfW-Effizienzhaus 40", the most ambitious of the three standards funded by the national grant programme. In our examples this is attained by U-values of typical passive houses and a heat supply system with an utmost fraction of renewables.

²² The level of requirements has in principle not been altered by EnEV 2014.

Three basic types of heat supply systems have been defined:

• "Natural Gas" (Variants 01, 02, 03):

TABUL

PISCOPE

Variant 01 is predefined by the reference features of the energy saving ordinance: The U-values as well as the description of the heating system (condensing boiler + thermal solar system for DHW + exhaust ventilation system) have been directly taken from the regulation (exception: natural gas instead of oil).

Variant 02 consists of the same system but the U-values are considerably lower (heat transfer coefficient by transmission about 45 % lower than Variant 01).

For **Variant 03** U-values that are typical for passive houses have been defined. For the system a CHP plant and a ventilation system with heat recovery is needed to fulfil the requirements.

• "Biomass" (Variants 11, 12, 13):

Because of the much lower non-renewable primary energy factor of biomass the U-values of Variant 11 can be higher than in the case of "Natural Gas" (Variant 01). The maximum U-values (second requirement) set by the energy saving ordinance are reached here.

The U-values of Variant 12 are about 30 % lower than of Variant 11, the system remains the same.

For Variant 13 passive house U-values are defined. The heat supply is provided by a ventilation system with heat recovery and a Bio-Methan CHP plant. In addition a PV system is installed. This variant corresponds to the actual realisation of this building (see [IWU 2013b]).

• "Electricity"(Variants 21, 22, 23):

The supply system consists in all variants of an electrical heat pump, in case of variant 21 with heat source external air, in both other cases (Variant 22 and 23) with heat source ground. Variant 23 is furthermore equipped with a ventilation system with heat recovery and a PV system. To implement the first supply system variant the fabric has to be a bit more efficient than the reference building. The U-values of the other two variants correspond to those of the supply system type "Biomass".

Table 49:	Exemplary multi-family house (MFH) – definition of variants
-----------	---

DE.N.MFH.11.Gen 1		"I	natural gas	5"	"biomass"			"electricity"		
Variant N°		001	002	003	011	012	013***	021	022	023
Variation type		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB
Energy Performa	ance Level	EnEV 2009/2014	KfW Effizienz- haus" 70	Niedrigst- energie- haus (KfW Effien- zienzhaus 40)	EnEV 2009/2014	KfW Effizienz- haus" 70	Niedrigst- energie- haus (KfW Effien- zienzhaus 40)	EnEV 2009/2014	KfW Effizienz- haus" 70	Niedrigst- energie- haus (KfW Effien- zienzhaus 40)
U-values										
Roof	W/(m²K)	0.20	0.10	0.08	0.25	0.15	0.08	0.20	0.15	0.08
Wall	W/(m²K)	0.28	0.14	0.12	0.33	0.18	0.12	0.24	0.18	0.12
Window	W/(m²K)	1.30	0.70	0.70	1.30	1.10	0.70	1.30	1.10	0.70
Door	W/(m²K)	1.80	0.80	0.80	1.80	1.30	0.80	1.80	1.30	0.80
Floor	W/(m²K)	0.35	0.18	0.12	0.50	0.25	0.12	0.35	0.25	0.12
Thermal bridging supplement (whole enve- lope)	W/(m²K)	0.05*	0.05*	0.01**	0.05*	0.05*	0.01**	0.05*	0.05*	0.01**
Heat Supply Sys	tem									
Heat generator		cor	idensing bo	biler	wood pell	lets boiler	Bio- Methan CHP	elect	rical heat p	oump
Specification supplemental				+CHP				ext. air + buffer storage + electric heating rod	soil	soil
Thermal solar s	ystem	DHW	DHW	DHW	-	-	DHW	-	-	-
Distribution system			cated complete of thermal env			cated complete of thermal env			cated complete of thermal env	
Maximum temperature heating distribution		55°C	55°C	55°C	55°C	55°C	55°C	55°C	55°C	35°C
DHW circulati	ion pump	installed	installed	installed	installed	installed	installed	installed	installed	installed
Ventilation syste	em	exhaust air	exhaust air	heat recovery	exhaust air	exhaust air	heat recovery	exhaust air	exhaust air	heat recovery
Further system		-	-	-	-	-	PV	-	-	PV

Default value of German calculation procedure, if certain conditions are kept

status: 10-10-2014

*) **) Calculated effect of actual thermal bridges according to design drawings, transformed as a supplement on the total envelope area

***) actual implementation of this building, see documentation in [IWU 2013b]

In the new version of the German "Building Typology Brochure" [IWU 2014a] the three variants of the new buildings are displayed on a double page for each supply system type. As an example, a "Building Type Display Sheet" for one supply system type is shown in Figure 19. Starting point for the development were the sheets developed for existing buildings and showcasing possible refurbishment measures [IWU 2014a]. The following changes have been implemented to adapt to the context of new buildings / NZEBs:

- The system definition includes a special row for displaying features of ventilation systems (including values for fan electricity demand and heat gain from the heat recovery).
- Electricity production by PV and CHP is now included in the system definition.
- Also the charts representing delivered energy, primary energy and energy costs have been revised to enable a display of the electricity production.

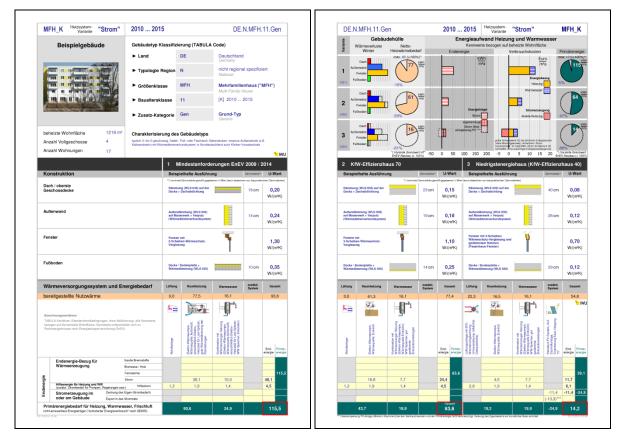


Figure 19: "Building Display Sheet" of the exemplary MFH <DE> (further examples in [IWU 2014a])

In Table 50 results of the national EnEV calculation method are displayed. The delivered and primary energy results do not include the PV system since the method has not yet been implemented in the respective software.

Label of the variant triplet		"n	atural ga	IS"		'biomass	"	"electricity"		
Variant N°		001	002	003	011	012	013	021	022	023
Variation type		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB
Energy performance level		EnEV 2009/2014	KfW Effizienz- haus 70	Niedrigst- energiehaus (KfW Effienzienz- haus 40)	EnEV 2009/2014	KfW Effizienz- haus 70	Niedrigst- energiehaus (KfW Effiezienz- haus 40)	EnEV 2009/2014	KfW Effizienz- haus 70	Niedrigst- energiehaus (KfW Effizienz- haus 40)
Method				EnEV 2	009 / DIN	V 4108-6	+ DIN V 4	701-10*		
National reference area**	m²	1458.4	1458.4	1458.4	1458.4	1458.4	1458.4	1458.4	1458.4	1458.4
Thermal transfer coeffi- cient by transmission. related to envelope area	W/(m²K)	0.453	0.255	0.197	0.500	0.348	0.197	0.431	0.348	0.197
Relation to require- ment		91 %	51 %	39 %	100 %	70 %	39 %	86 %	70 %	39 %
Relation to reference standard (criteria for KfW funding)		100 %	56 %	43 %	110 %	77 %	43 %	95 %	77 %	43 %
Gross energy need for heating***	kWh/(m²a)	51.0	31.8	29.4	55.7	40.6	29.4	48.8	40.6	29.4
Delivered energy										
Fossil fuels	kWh/(m²a)	59.7	41.3	7.6	0	0	0	0	0	0
Renewable fuels	kWh/(m²a)	0	0	0	100.9	80.4	19.7	0	0	0
Electricity	kWh/(m²a)	0	0	12.4	0	0	0	25.8	16.0	7.6
Auxiliary energy	kWh/(m²a)	2.0	1.9	3.1	3.4	3.4	3.1	1.8	2.8	4.1
Primary energy demand	kWh/(m²a)	71.0	50.5	25.1	29.1	25.0	8.0	71.6	48.9	30.6****
Relation to require- ment		98 %	70 %	35 %	40 %	34 %	11 %	99 %	68 %	(42 %) ****
KfW funding level: "Effizienzhaus"		-	70	40	-	70	40	-	70	(55)****

Table 50:	Exemplary MFH – Results of the energy balance calculation; Procedure: EnEV 2009 / 2014
	DIN V 4108-6 + DIN V 4701-10

*) Calculated by use of EnEV-XL 5.0 (MS Excel workbook), PV system not included

status: 10-10-2014

**) "Gebäudenutzfläche A_N nach EnEV" (synthetical quantity)

***) Heat recovery by ventilation systems not considered

****) Effect of PV system not included in the used calculation software. By assuming 20.6 kWh/(m²a) PV electricity production about 8.2 kWh/(m²a) of the building's electricity demand can be directly covered ("self-use"). The primary energy demand is then reduced from 30.6 to to 10.9 kWh/(m²a). This primary energy demand would be complying with the "KfW Effizienzhaus 40" funding level.

TABULA calculation results for all exemplary buildings

Table 51 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

In January 2016 a tightening of requirements will come into force. The level of energy demand which will be achieved by the recast is displayed in Table 52 (NZEB definition is identical, for more details see [IWU 2014a]).

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal k/\h/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kVVh/(m²a)	q_exp_sum_el kWh/(m²a)
	01	Minimum Requirement	1.04	86	0	86	80	10	22	98	0	0	0	9	0	0	0
	02	Improved Standard	0.88	70	23	48	44	10	20	58	0	0	0	10	0	0	0
SFH	03	Ambitious Standard / NZEB	0.47	44	21	23	20	10	20	31	0	0	0	10	0	0	0
	11	Minimum Requirement	1.09	89	0	89	84	10	22	0	0	0	151	9	0	0	0
	12	Improved Standard	0.88	70	0	70	70	10	20	0	0	0	128	8	0	0	0
	13	Ambitious Standard / NZEB	0.47	44	21	23	20	10	20	0	0	0	40	10	0	0	0
DE.N.SFH.11.Gen	21	Minimum Requirement	0.96	81	0	81	84	10	22	0	0	0	0	60	0	0	0
	22	Improved Standard	0.88	70	0	70	70	10	20	0	0	0	0	34	0	0	0
	23	Ambitious Standard / NZEB	0.47	44	22	22	22	10	20	0	0	0	0	22	0	0	-28
	01	Minimum Requirement	0.69	72	0	72	67	10	22	83	0	0	0	9	0	0	0
	02	Improved Standard	0.59	59	24	35	32	10	20	45	0	0	0	10	0	0	0
тн	03	Ambitious Standard / NZEB	0.32	38	21	17	14	10	20	25	0	0	0	10	0	0	0
	11	Minimum Requirement	0.86	82	0	82	77	10	22	0	0	0	141	9	0	0	0
II II I	12	Improved Standard	0.59	59	0	59	59	10	20	0	0	0	113	8	0	0	0
	13	Ambitious Standard / NZEB	0.32	38	21	17	14	10	20	0	0	0	32	10	0	0	0
DE.N.TH.11.Gen	21	Minimum Requirement	0.62	68	0	68	71	10	22	0	0	0	0	54	0	0	0
	22	Improved Standard	0.57	58	0	58	58	10	20	0	0	0	0	31	0	0	0
	23	Ambitious Standard / NZEB	0.32	38	22	16	16	10	20	0	0	0	0	20	0	0	-19
	01	Minimum Requirement	0.74	75	0	75	72	15	22	92	0	0	0	4	0	0	0
	02	Improved Standard	0.42	46	0	46	43	15	22	61	0	0	0	4	0	0	0
MFH	03	Ambitious Standard / NZEB	0.34	36	21	15	14	15	22	29	0	0	0	6	0	0	-5
	11	Minimum	0.81	80	0	80	77	15	22	0	0	0	126	4	0	0	0
	12	Requirement Improved Standard	0.57	57	0	57	54	15	22	0	0	0	97	4	0	0	0
	13	Standard Ambitious Standard / NZEB	0.34	36	21	15	14	15	22	0	0	0	34	6	0	0	-31
DE.N.MFH.11.Gen	21	Minimum Requirement	0.70	72	0	72	71	15	22	0	0	0	0	49	0	0	0
	22	Improved	0.57	57	0	57	54	15	22	0	0	0	0	27	0	0	0
	23	Standard Ambitious Standard / NZEB	0.34	36	21	15	13	15	22	0	0	0	0	17	0	0	-23
Explanation of Q h_Transmission q_h_nd q_ve_rec_h_usable q_h_nd_net q_g_h_out q_w_nd		ties (TABULA Data W/(m²K) floor area kWh/(m²a) energy ne kWh/(m²a) usable cor kWh/(m²a) net energy kWh/(m²a) net energy kWh/(m²a) net energy	related he ed for hea ntribution need for heat heat need dor	iting of ventila heating ting syste mestic he	ition hea (q_h_nd em (net e ot water	t recover - q_ve_i energy n	ry rec_h_u: eed + st	sable) orage lo:	sses + d	istributic			ng enve	lope (cor			10-2014 Jation)
q_w_nd kWh/(m²a) net energy need domestic hot water q_g_w_out kWh/(m²a) generated heat dhw (net energy need + storage losses + distribution losses) q_del_sum_gas,oli,oli,,oli																	

Table 51: Exemplary new buildings construction year class 2010 ... 2015 - Results of the TABULA calculation procedure (standard boundary conditions)

<DE> Germany

87

Building	Var. N°	Performance Level		h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
	01	Minimum Requireme	nt	0.76	72	0	72	68	10	20	84	0	0	0	8	0	0	0
	02	Improved Standard		0.73	63	23	40	37	10	20	50	0	0	0	10	0	0	0
SFH	03	Ambitious Standard /	NZEB	0.47	44	21	23	20	10	20	31	0	0	0	10	0	0	0
	11	Minimum Requirement		1.04	86	0	86	85	10	20	0	0	0	149	8	0	0	0
	12	Improved Standard		0.73	63	0	63	63	10	20	0	0	0	119	8	0	0	0
L. a. A	13	Ambitious Standard /	NZEB	0.47	44	21	23	20	10	20	0	0	0	40	10	0	0	0
DE.N.SFH.12.Gen	21	Minimum Requireme	nt	1.04	88	0	88	87	10	20	0	0	0	0	39	0	0	0
	22	Improved Standard		0.73	63	0	63	63	10	20	0	0	0	0	32	0	0	0
	23	Ambitious Standard /	NZEB	0.47	44	22	22	22	10	20	0	0	0	0	22	0	0	-28
	01	Minimum Requireme	nt	0.49	61	0	61	57	10	20	71	0	0	0	8	0	0	0
	02	Improved Standard		0.49	54	24	30	27	10	20	39	0	0	0	10	0	0	0
тн	03	Ambitious Standard /	NZEB	0.32	38	21	17	14	10	20	25	0	0	0	10	0	0	0
	11	Minimum Requireme	nt	0.69	73	0	73	72	10	20	0	0	0	131	8	0	0	0
II II I	12	Improved Standard		0.49	54	0	54	53	10	20	0	0	0	105	8	0	0	0
WIL	13	Ambitious Standard /	NZEB	0.32	38	21	17	14	10	20	0	0	0	32	10	0	0	0
DE.N.TH.12.Gen	21	Minimum Requirement		0.69	74	0	74	73	10	20	0	0	0	0	35	0	0	0
	22	Improved Standard		0.49	54	0	54	53	10	20	0	0	0	0	29	0	0	0
	23	Ambitious Standard /	NZEB	0.32	38	22	16	16	10	20	0	0	0	0	20	0	0	-19
	01	Minimum Requireme	nt	0.70	74	29	45	43	15	22	61	0	0	0	6	0	0	0
	02	Improved Standard		0.48	50	24	27	24	15	22	41	0	0	0	6	0	0	0
MFH	03	Ambitious Standard /	NZEB	0.34	36	21	15	14	15	22	29	0	0	0	6	0	0	-5
	11	Minimum Requireme	nt	0.74	75	0	75	72	15	22	0	0	0	119	4	0	0	0
	12	Improved Standard		0.52	54	0	54	50	15	22	0	0	0	92	4	0	0	0
H ere a	13	Ambitious Standard /	NZEB	0.34	36	21	15	14	15	22	0	0	0	34	6	0	0	-31
DE.N.MFH.12.Gen	21	Minimum Requireme	nt	0.74	77	0	77	73	15	22	0	0	0	0	33	0	0	0
	22	Improved Standard		0.52	54	0	54	50	15	22	0	0	0	0	26	0	0	0
	23	Ambitious Standard /	NZEB	0.34	36	21	15	13	15	22	0	0	0	0	17	0	0	-23
Explanation of Q h_Transmission q_h_nd		W/(m ² K) fl	oor area	fields) related he ed for hea		er coeffi	cient by	transmis	sion / in	dicator f	or energ	y quality	of buildi	ing enve	lope (cor			10-2014 ulation)
q_ve_rec_h_usable		kWh/(m²a) u	sable cor	ntribution	of ventila				able)									
q_h_nd_net q_g_h_out				need for heat heat						sses + d	listributio	on losses	5)					
q_w_nd	_w_nd kWh/(m²a)			need do	nestic h	ot water	05		0									
		kWh/(m²a) g	enerated	heat dhw	(net ene	ergy nee	a + stora	ige losse	es + distr	ribution I	osses)							
u																		

Table 52:	Exemplary new buildings construction year class "from 2016"
	- Results of the TABULA calculation procedure (standard boundary conditions)

OPE

 ..._dh, ..._other, ..._el
 sum produced electricity (negative value)

 q_exp_sum_el
 kWh/(m²a)
 sum produced electricity (negative value)

3.5.3 Sources / References Germany

Reference shortcut	Concrete reference (in respective language)	Short description (in English)		
[BMVI 2014]	Bundesministerium für Verkehr und digitale Infra- struktur (BMVI) (Hrsg.): Modellprojekte im Effizi- enzhaus Plus Standard. Berlin, 2014, <u>http://www.bmvi.de/DE/EffizienzhausPlus/Foerder</u> programm/effizienzhaus-plus- foerderprogramm_node.html	Description oft he funding programme and building performance level "Effizienzhaus Plus"		
[BPIE / IWU 2013]	Enseling, Andreas; Loga, Tobias: Implementing the cost-optimal methodology in EU countries - Case Study Germany; editor: BPIE, Brussels / Belgium 2013	Exemplary analyses of the total costs of new buildings in dependence of the energy perform- ance level		
[Diefenbach 2002]	Diefenbach, Nikolaus: Bewertung der Wärmeer- zeugung in KWK-Anlagen und Biomasse- Heizsystemen, Institut Wohnen und Umwelt, Darmstadt 2002	Discussion of an alternative approach for assess- ing the non-renewable primary energy demand of buildings, supplied by CHP and biomass systems in Germany		
[DIN V 18599]	Deutsches Institut für Normung (DIN): DIN V 18599 – "Energetische Bewertung von Gebäu- den"; 2011-12	German standard; scheme for calculation of the energy need for heating; basis for EPC calculation (non-residential and residential buildings)		
[DIN V 4108-6 / 4701-10]	Deutsches Institut für Normung (DIN): DIN V 4108- 6 – "Berechnung des Jahresheizwärme- und des Jahresheizenergiebedarfs"; 2003-06, geändert durch Berichtigung 1 2004-03.	German standard; scheme for calculation of the energy need for heating; basis for EPC calculation (residential buildings)		
[EnEG 2013]	Energieeinsparungsgesetz (EnEG) in der Fassung der Bekanntmachung vom 1. September 2005 (BGBI. I S. 2684), das zuletzt durch Artikel 1 des Gesetzes vom 4. Juli 2013 (BGBI. I S. 2197) geändert worden ist <u>http://www.gesetze-im- internet.de/bundesrecht/eneg/gesamt.pdf</u>	German Energy Saving Act		
[Feist 2003]	Feist, Wolfgang: Das Passivhaus: Die Optimierung energiebewusster Bauweisen. VDE Verlag (Ger- many), 2003	Overview of passive house principles, experiences from the first demonstration buildings		
[Feist 2007]	Feist, Wolfgang: Passive House Standard – A Proven Energy Saver; Passive House Institute, Darmstadt / Germany 2007; webarticle at: <u>http://www.passivhaustagung.de/Passive House</u> <u>E/</u> <u>Passivehouse measured consumption.html</u>	Overview of measured consumption values in terraced housing estates in Germany, constructed according to the passive house concept		
[Fingerling 1996]	Fingerling, Anne: Eine Geschichte der Niedrig- energiehäuser bis zum Passivhaus; IWU, Dar- mstadt 1996 http://www.iwu.de/fileadmin/user_upload/dateien/e nergie/neh_ph/IWU_1996 Fingerling_Eine- Geschichte-der-Niedigenergiehaeuser-bis-zum- Passivhaus.pdf	History of the development of low energy buildings in Germany towards passive houses		
[GEMIS]	IINAS - International Institute for Sustainability Analysis and Strategy (ed.): GEMIS - Global Emissions Model for integrated Systems: <u>http://www.iinas.org/gemis.html</u> for publications see: <u>http://www.iinas.org/gemis-docs-en.html</u>	GEMIS (Global Emissions Model for integrated Systems), a public domain life-cycle and material flow analysis model and database		
[iPHA]	"International Passive House Association (iPHA)"; information at the homepage: <u>http://www.passivehouse-</u> international.org/index.php?page_id=79	Current overview of the status of passive house spread in Germany and other countries, in English language		
[IWU 1990]	Ebel, Witta; Eicke, Werner; Feist, Wolfgang; Hil- debrandt, Olaf: Hilpert, Hans-Peter; Klien, Jobst;	Model of the German residential building stock;		

debrandt, Olaf; Hilpert, Hans-Peter; Klien, Jobst; Kröning, Wolfgang; Schmidt, Hemlut.; Siepe, Benedikt; Wullkopf, Uwe.: Energiesparpotential im Gebäudebestand; IWU, Darmstadt 1990

Table 53: Sources / References Germany

Model of the German residential building stock; energy saving potentials; scenario calculations;

90 New Buildings in National Residential Building Typologies TABULA

 Banangor	mational	Reoraenti	al Ballall	grypologi	00
	ALL DOUGH	A 20.		Contraction of the	

EPISCOPE

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[IWU 1997]	Loga, Tobias; Imkeller-Benjes, Ulrich: Energie-Paß Heizung/Warmwasser. Energetische Qualität von Baukörper und Heizungssystem; IWU, Darmstadt 1997	Procedure for the calculation of the primary energy demand of buildings
[IWU 2003]	Institut Wohnen und Umwelt (Hrsg.): Deutsche Gebäudetypologie – Systematik und Datensätze; IWU, Darmstadt 2003 http://www.iwu.de/fileadmin/user_upload/dateien/e nergie/klima_altbau/Gebaeudetypologie_Deutschl and.pdf	Publication of Datasets of exemplary buildings from the German Residential Buildings Typology
[IWU 2011]	Loga, Tobias; Diefenbach, Nikolaus; Born, Rolf: Deutsche Gebäudetypologie. Beispielhafte Maß- nahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden; Institut Wohnen und Umwelt (IWU), Darmstadt 2011 <u>http://www.building-</u> typology.eu/downloads/public/docs/brochure/DE_T	National typology brochure Germany, developed during the IEE Project TABULA
[IWU 2013a]	ABULA TypologyBrochure IWU.pdf Diefenbach, Nikolaus; v. Malottki, Christian; Ense- ling, Andreas; Loga, Tobias; Cischinsky, Holger; Stein, Britta; Hörner, Michael; Grafe, Michael: Maßnahmen zur Umsetzung der Ziele des Ener- giekonzepts im Gebäudebereich – Zielerrei- chungsszenario. Studie im Auftrag des Bundesmi- nisterium für Verkehr, Bau und Stadtentwicklung (BMVBS): BMVBS-Online-Publikation 03/2013.	Calculation of scenarios for the German Building Stock
[IWU 2013b]	Schaede, Margrit; Großklos, Marc: Passivhäuser mit Energiegewinn – Begleitung des Projektes Cordierstraße 2-6 in Frankfurt am Main; IWU, Darmstadt/Germany 2013	Realisation of an apartment building as "passive house with energy gain", description of the optimi- sation of construction and supply system details; discussion of the energy balance calculation
[IWU 2013c]	Diefenbach, Nikolaus; Stein, Britta; Loga, Tobias; Rodenfels, Markus (IWU); Gabriel, Jürgen; Fette, Max (Fraunhofer IFAM): Gutachten Monitoring der KfW-Programme "Energieeffizient Sanieren" und "Energieeffizient Bauen" 2012; im Auftrag der KfW-Bankengruppe; Institut Wohnen und Umwelt, Darmstadt / Germany 2013 http://www.iwu.de/fileadmin/user_upload/ datei- en/energie/KfW_Monitoringbericht_fuer_2012.pdf	Evaluation of the national grant programme of the KfW Bank for the year 2012; a short English de- scription of the funding scheme can be found at: <u>https://www.kfw.de/Download-</u> <u>Cen-</u> <u>ter/Konzernthemen/Nachhaltigkeit/englisch/Sustai</u> <u>nability-Report-2012-1.pdf</u>
[IWU 2012a]	Loga, Tobias; Diefenbach, Nikolaus; Stein, Britta; Born, Rolf: TABULA - Scientific Report Germany. Further Development of the National Residential Building Typology; IWU - Institut Wohnen und Umwelt; Darmstadt / Germany; October 2012 <u>http://www.building-</u> <u>typol-</u> <u>oqy.eu/downloads/public/docs/scientific/DE_TABU</u> LA_ScientificReport_IWU.pdf	Description of the revision and further develop- ment of the national residential building typology Germany
LA ScientificReport_IWU.pdf [IWU 2012b] Enseling, Andreas; Diefenbach, Nikolaus; Hinz, Eberhard; Loga, Tobias: Evaluierung und Fortent- wicklung der EnEV 2009: Untersuchung zu öko- nomischen Rahmenbedingungen im Wohnungs- bau. Studie im Auftrag des Bundesinstituts für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR); BMVBS (Hrsg.), Berlin 2012		Analysis of the economic conditions for new build- ings and refurbishments in dependence of the energy performance level; evaluation of the re- quirements of the German energy saving ordi- nance 2009 and of the consequences of a possi- ble tightening
[IWU 2014a]	Loga, Tobias; Stein, Britta; Diefenbach, Nikolaus; Born, Rolf: Deutsche Gebäudetypologie. Beispiel- hafte Maßnahmen zur Verbesserung der Effizienz von typischen Wohngebäuden; second edition, IWU, Darmstadt / Germany, draft version October 2014, previously unreleased	German typology brochure, second edition 2014
[IWU 2014b]	Hörner, Michael: Vorschlag zur Neuregelung der Brennstoff-Allokation bei der Kraft-Wärme- Kopplung; IWU, Darmstadt / Germany 2014, previously unreleased	Proposal for a new concept of fuel allocation for combined heat and power (CHP) plants

<DE> Germany

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[IWU 2014c]	Großklos, Marc: Kumulierter Energieaufwand und CO ₂ -Emissionsfaktoren verschiedener Energieträ- ger und –versorgungen . IWU, Darmstadt / Ger- many 28.07.2014: http://www.iwu.de/fileadmin/user_upload/dateien/e nergie/werkzeuge/kea.pdf	Publication containing cumulated energy demand and CO ₂ emission factors for different energy carriers and supply systems
[Schettler-Köhler / Kunkel 2012]	Schettler-Köhler, Horst-P.; Kunkel, Sara: EPBD implementation in Germany – Status at the end of 2012; report included in the book "Implementing the Energy Performance of Buildings Directive (EPBD)"; ADENE / Portugal 2013 http://www.buildup.eu/sites/default/files/content/CA 3-National-2012-Germany-ei.pdf	Overview of the status of EPBD implementation in Germany (end 2012)
[Zirngibl 2014]	Zirngibl, Johann: Nearly Zero Energy Buildings (NZEB) in the CEN draft standard; REHVA Journal – May 2014 http://www.rehva.eu/publications-and- resources/hvac-journal/2014/032014/nearly-zero- energy-buildings-NZEB-in-cen-draft-standard/	Overview on the CEN approach for assessing NZEBs

3.6 <DK> Denmark

(by EPISCOPE partner SBi)

The Danish EPISCOPE building typology comprises residential buildings (detached single family houses; terraced houses; and blocks of flats) divided into typical age categories each reflecting a change in building tradition or a change in building energy requirements stated in the different Danish building codes. The first nation-wide building energy requirements were introduced in the Danish building regulations 1961, and they have been tightened several times since then.

Period of construction	Comment
Before 1850	Solid walls
1851–1930	Shift in building tradition
1931–1950	Cavity walls introduced
1951–1960	Insulated cavity walls introduced
1961–1972	First energy requirements in BR61 ^{a)}
1973–1978	Tightened energy requirements in BR72 ^{a)}
1979–1998	Tightened energy requirements in BR78 ^{a)}
1999–2006	Tightened energy requirements in BR98 ^{a)}
2007–2010	Tightened energy requirements in BR06/08 ^{a)}
2010-2015	Tightened energy requirements in BR2010 ^{a)}
2015-2020	Tightened energy requirements in BR2015 ^{b)}
After 2020	Tightened energy requirements in BR2020 (NZEB) ^{b)}

Table 54: Identified typical building periods in the Danish EPISCOPE building typology.

^{a)} BR is a reference to the Danish Building Regulations and the following digits refer to the year when the BR came into force.

^{b)} Indicates the expected years for future Danish Building Regulations that will come into force.

In the Danish 2010 Building Regulations, there are projections for planned tightening of the building energy requirements that are expected to come into force in 2015 and 2020. The planned 2020 building energy requirements reflect the Danish nearly zero energy building (NZEB) building energy performance requirement. Currently the maximum consumption of primary energy for a residential building that complies with the 2020 requirements is 20 kWh/m² per year, covering heating, domestic hot water, ventilation, electricity for operating the building (fans, pumps, etc.) and potential penalty for overheating (calculated as the amount of electricity converted to primary energy, used in an imaginary mechanical cooling system with an average COP of 3, to bring down the indoor temperature to 26 °C). For non-residential buildings the limit for primary energy consumption is 25 kWh/m² per year, which in addition to the above also includes electricity for artificial lighting.

3.6.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Denmark

This section presents an outline for the transposition and implementation of the EPBD (Energy Performance of Buildings Directive) Energy Performance (EP) requirements in Denmark. It also describes the future transition to the cost-optimal EP requirements, as well as the action plan for progression to NZEB by 2020.

Table 55Development of energy performance requirements (kWh primary energy per m² of heated
gross floor area per year) for typically sized residential and non-residential buildings in Den-
mark.

kWh/m² per year	2006	2010	2015	2020
Residential, 150 m ² heated gross floor area	84.7	63.0	36.7	20
Non-residential, 1000 m ² heated gross floor area	97.2	73.0	42.0	25

Minimum requirements for new residential buildings in Denmark

The EP requirements for new buildings were implemented in their current form, i.e., the EP calculation method, in 2006, after the implementation of the first EPBD. These requirements included forecasts for the tightening of the EP requirements in 2010 and 2015 — approximately 25 % compared with the 2006 requirements in each step. In 2009, the requirements were revised, and the EP requirements for new buildings were tightened by 25 % in the Danish Building Regulations 2010 (BR10). In the 2010 revision, no forecast for the 2020 EP requirements was included, but the building industry requested this forecast. This led to a process of cost analysis for establishing the different levels of EP requirements. The outcome was the forecast for the EP requirements for new buildings in 2020 — i.e., the Danish NZEB definition.

For existing buildings, the requirements were initially implemented according to the definition of the 25 % rule stated in the EPBD (though no area threshold was implemented), in combination with component requirements. According to the previous Danish Building Regulation, all cost-effective measures had to be implemented if more than 25 % of the building envelope or the value of the building were affected in a renovation project. However, studies regarding the impact of this rule on the implementation of energy saving measures showed that the rule was a hindrance to energy savings. It was thus decided to increase the uptake of energy saving measures in the existing building stock, by implementing more strict requirements for the replacement or renovation of the individual building components. The BR10 includes a list of minimum requirements; most of these are considered economically profitable under normal conditions. However, the requirements for the replacement of windows must be fulfilled without consideration of the economic aspects.

New buildings

The existing BR10 sets the minimum energy requirements for all types of new buildings. These requirements relate to the energy frame and the envelope of the building. In addition to the minimum requirements, BR10 also sets the requirements for two voluntary low energy classes: Low-energy Class 2015 and Building Class 2020. These two classes are expected to be introduced as the minimum requirements by 2015 and 2020, respectively.

The energy frame is the maximum allowed primary energy demand for a building, including e.g., thermal bridges, solar gains, ventilation, heat recovery, cooling, lighting (non-residential buildings only), boiler and heat pump efficiency, electricity for operating the building, and potential sanctions for overheating. The overheating sanction is calculated on a fictive energy use, equal to the energy needed in an imaginary mechanical cooling system in order to keep the indoor temperature at 26 °C. This additional energy use is included in the calculated overall energy consumption of the building.

The energy frame for the primary energy demand in new buildings has been tightened by 25 % compared with the 2006 baseline. Low-energy Class 2015 introduces a 50 % tightening compared with the 2006 baseline, and Building Class 2020 further tightens the energy frame by 25 %, thereby reducing the allowed energy frame by 75 % compared with the 2006 baseline.

The building code also sets requirements for calculating the design transmission heat loss for the opaque part of the building envelope for new buildings (it fixes the temperature differential indoors-outdoors at 32 °C), as well as the minimum requirements for components and installations. The minimum component requirements are primarily intended to eliminate the risk of mould growth due to cold surfaces. It is not possible to construct a building, meeting the energy frame solely by fulfilling the minimum component requirements. Both sets of requirements work in parallel with the requirements for the energy frame, and are set in order to avoid having new dwellings and/or building components and installations with a high level of renewable energy but poor insulation. A Building Class 2020 building must be constructed so that the designed transmission loss does not exceed 3.7 W/m² of the building envelope in the case of single-storey buildings, 4.7 W/m² for two-storey buildings and 5.7 W/m² for buildings with three storeys or more. Table 56 shows the maximum allowed dimensioning transmission heat loss through the opaque building envelope. This requirement was introduced with the implementation of the EPBD in Denmark.

The BR10 minimum energy frame requirement is:

- 52.5 + 1,650 / A [kWh/m².year] for residential buildings, and
- 71.3 + 1,650 / A [kWh/m².year] for non-residential buildings,

where A is the heated gross floor area.

The energy frame for the voluntary Low-energy Class 2015 is:

- 30 + 1,000 / A [kWh/m².year] for residential buildings, and
- 41 + 1,000 / A [kWh/m².year] for non-residential buildings.

The energy frame for the voluntary Building Class 2020 (NZEB) is:

- > 20 / A [kWh/m².year] for residential buildings, and
- > 25 / A [kWh/m².year] for non-residential buildings.

Table 56Maximum allowed design (outdoor temperature = -12 °C) transmission heat loss through the
opaque part of the building envelope (W/m²).

Floors	2006	BR10	LE2015	BC2020
1	6	5	4	3.7
2	7	6	5	4.7
2+	8	7	6	5.7

In addition to the energy performance requirements, an indoor climate requirement for residential buildings that comply with the Low-energy class 2015 or Building class 2020 requirements has been introduced. The room in a residential building that has the highest internal loads must not show indoor room temperatures above 26 °C for more than 100 hours per year and not above 27 °C for more than 25 hours per year. The number of hours with high room temperatures in residential buildings can be calculated in the national energy performance compliance checking tool, Be10. For other building types, dynamic simulation tools are required for proof of compliance with the thermal indoor climate requirements.

Danish calculation method to comply with new building regulations for residential buildings

TABULA

The calculation procedure in the BR10 has been updated according to the new requirements, and is described in the SBi Direction 213: Energy demand in buildings²³. The procedure follows the relevant CEN standards to great extent. This publication also includes the updated PC calculation program Be10. The calculation core of this program is to be used by all other programs for compliance checks and energy certification, to ensure the identical calculation of the EP of buildings. Compared with the previous calculation procedure, Be06, the new procedure has been updated with respect to:

- New energy frames and energy requirements given in BR10;
- Low-energy Class 2015 and Building Class 2020, including new district heating factors (conversion to primary energy);
- New energy frame for buildings heated to 5-15 °C;
- Multiple tanks for Domestic Hot Water (DHW);
- Improved calculation of cooling demand;
- Multiple heat pumps in the same building/zone;
- Multiple solar cell (photovoltaic) systems;
- Calculation of the electricity production by on-site wind turbines.
- New principle for deduction of electricity from PV and wind turbines.

Status of NZEB definition for residential buildings in Denmark

The Danish NZEB definition is implemented in the current Danish Building Regulations BR10 as predictions for tightening of the energy performance requirements in 2020, and has been described in the section above.

²³ In Danish at: www.anvisninger.dk - requires license for download

Table 57: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB definition in Denmark

			С	alculation	Metho	d New	Building F	egulation	s – (part 1)		
Cou	ntry	DK	De	enmark					Status	08/2014	
Natio	onal Ree	quiren	nent	ts for New	Resid	ential I	Buildings		Special Aspects with regard to the National NZEB Definition		
Legi	slation	/ Stan	darc	ds					The NZEB definition mented in the Danis		
Danisl	h Building	Regula	tions	2010 [BR10]					tions 2010 as a volu	ntary building class	
Expla	nation / C	ommer	nts						and a projection for the minimum re- quirements from 2020.		
									Proof of compliance		
х	Heating		x	DHW	Арр	liances			Class 2020 is done i is being used for pro		
х	Cooling		x	Auxiliary	Oth	er:			with the current mini	mum requirements.	
x	Ventilat	ion		Lighting							
Expla	nation / C	ommer	nts								
Calc	ulation	Proce	dur	е		Ca	culation period	1			
x	Calculat (building		nerg	y need for he	ating		Month				
х	Calculat	tion of d	elive	red energy (s	ystem)		Month				
Expla	nation / C	ommer	nts								
Cons	siderati	on of s	Spe	cial Techn	ologie	s					
Therm	nal System	IS									
x	Ventilati	on syste	em w	ith heat recov	very						
x	Thermal	solar s	ysten	n							
	Other sp	pecial sy	/stem	IS:							
On-Sit	te Electrici	ity Prod	uctior	n	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹			
	On-site	СНР									
x	On-site	PV			x	х	month	H-C-W			
Other energy generation systems:											
x Wind turbines x x						х	month	H-C-W			
	¹ "self use ity; self u	" = parts o se conside	f the el ered fo								
Expla	nation / C	ommer	nts								
							urbines to the g period is bein				

Table 57 (continuation)

	Calculation Method New Building Regulations – (part 2)											
Cou	ntry	DK	Denmark				Status	08/2014				
Natio	onal Re	equirer	ments for New	Resid	ential Bu	uildings	Special Aspects with regard to the National NZEB Definition					
Туре	e of Re	quirem	ents (new buil	The primary energy factors change from the current minimum requirements								
x	U-values of building elements Heat transfer coefficient by transmission				Primary	Agreed weighting	to the NZEB level. For	district heating				
				x energy		factor	the primary energy factor drops from 1 to 0.6 and for electricity it drops from 2.5 to 1.8. This is done to take into					
	Energy need for heating				Carbon d	ioxide emissions	account the increasing	share of renew-				
Delivered energy x Other Summer temperatures							able energy in the national till is estimated that there newable energy share	e will be a re-				
the ma		a poorly i	nsulated building w			iission is set to hinder le energy to balance	requirements. For other buildings that buildings, it is possible extension of the energy special processes goin building, i.e. long week operation, special need lation rates or artificial room heights, large nur in the building, large co hot water. The extension calculated with a sign a negative if the special p tribute in a positive way consumption of the building. The room that has the loads must not show in temperatures above 26 than 100 hours per yea 27 °C for more than 25	to obtain an y frame to cover g on in the ly hours of ds for high venti- lighting, high mber of people onsumption of on is being and can thus be processes con- y to the energy lding. highest internal door room S °C for more ar and not above				

Assessment of energy carriers in Denmark

Table 58: Danish primary energy factors

Label / type of factor	Primary Energy Factor Danish Building Regulations 2010
used for EPC rating	X
used for building regulations requirements	X
Label (national language)	Energimærke
Description / type of weighting factor	agreed weighting factors ¹⁾
Factor is multiplied by delivered energy based on the	H _s (gross calorific value)
Reference	[BR10]
Natural gas	1
Heating oil	1
Firewood	1
Wood pellets	1
Electricity	2.5 / 1.8 ²⁾
Electricity production CHP	2.5 / 1.8 ²⁾
Electricity production PV system	2.5 / 1.8 ²⁾
District heating	1.0 / 0.6 ²⁾
District heating without CHP	1.0 / 0.6 ²⁾
District heating with 100 % CHP	1.0 / 0.6 ²⁾

1) The factors are rather a political decision, based on averages and wishes for promoting certain technologies than measuring energy produced in a chemical reaction.

2) The Primary energy factors for district heating and electricity in Denmark change over time and today buildings that comply with the low energy class 2015 or the building class 2020 use the future primary energy factors. The primary for district heating is an average for all Danish district heating systems and is fixed to 1.0 for buildings that comply with the 2010 requirements, 0.8 for buildings that comply with the 2015 requirements, and 0.6 for buildings that comply with the 2020 requirements. The primary energy factor for electricity is 2.5 for buildings that comply with the 2010 and 2015 requirements and is 1.8 for buildings that comply with the 2020 requirements.

Methodological points for discussion in Denmark

Electricity from combined heat and power in individual buildings is not considered a contribution which is acknowledged in the energy performance of the building.

Production of electricity from PV systems and local wind turbines must be at the building, the building site or located nearby on a site that is connected to the building in legally binding agreement (it is e.g. not legal to sell the wind turbine located near by after having constructed the building). This electricity production can be deducted from that part of the overall electricity need of the building which is covered by the regulation in the Danish Building Regulations, i.e. electricity for pumps, fans, input to heat pumps and – in non-residential buildings – electricity for artificial lighting. The balancing period in the calculations is monthly, while the economic balancing period towards the electricity grid is instantaneous. For private households, the feed-in tariff for selling electricity to the grid is currently less than 1/3 of the total price for buying electricity.

Biomass is considered a scarce energy source in Denmark and has no special benefit in the Danish energy performance calculations and has been assigned a primary energy factor of 1.0. In reality, this means that building energy saving measures in buildings heated by biomass is equally feasible as in buildings heated by fossil fuels.

District heating and ground or air source heat pumps are considered the only acceptable heating energy sources in the future Danish energy landscape. It is expected that replacement of existing oil- or gas-burners will be limited to one of the above sources in the near future.

3.6.2 Integration of National Requirements for New Buildings and NZEB Standards in the Danish Residential Building Typology

Houses that comply with the expected Danish 2020 (NZEB) requirements already exist and real example houses have been implemented in the Danish building typologies. The number of houses is still limited, and it has thus not been possible to establish typologies of the average house.

Classification scheme for the Danish residential building stock ("Building Type Matrix")

Buil	ding Type Matr	ix					
				Denmark			
	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
	national (Hele Denmark)	1850	Generic (Standard)	DK. N.SFH.01.Gen	DK.N.TH.01.Gen		DK.N.AB.01.Gen
2	national (Hele Denmark)	1851 1930	Generic (Standard)	DK. N. SFH. 02. Gen	DK.N.TH.02.Gen		DK.N.AB.02.Gen
	national (Hele Denmark)	1931 1950	Generic (Standard)	DK. N. SFH. 03. Gen	DK.N. TH. 03. Gen		DK.N.AB.03.Gen
	national (Hele Denmark)	1951 1960	Generic (Standard)	DK. N. SFH. 04. Gen	DK.N.TH.04.Gen		DK.N.AB.04.Gen
	national (Hele Denmark)	1961 1972	Generic (Standard)	DK. N.SFH. 05. Gen	DK.N.TH.05.Gen		DK.N.AB.05.Gen
6	national (Hele Denmark)	1973 1978	Generic (Standard)	DK. N. SFH. 06. Gen	DK.N.TH.06.Gen		DK.N.AB.06.Gen
	national (Hele Denmark)	1979 1998	Generic (Standard)	DK. N.SFH.07.Gen	DK.N.TH.07.Gen		DK.N.AB.07.Gen
	national (Hele Denmark)	1999 2006	Generic (Standard)	DK. N. SFH. 08. Gen	DK.N.TH.08.Gen		DK.N.AB.08.Gen
	national (Hele Denmark)	2007 2010	Generic (Standard)	DK. N. SFH. 09. Gen	DK.N.TH.09.Gen		DK.N.AB.09.Gen
	national (Hele Denmark)	2011	Generic (Standard)	DK. N. SFH. 10. Gen	DK.N.TH. 10.Gen		DK.N.AB. 10. Gen

Figure 20: Classification scheme ("Building Type Matrix") of the Danish residential building typology, now extended towards new buildings

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
			n	-	
Number of dwellings		1	1	-	72
Number of full storeys (conditioned)		1	2	-	8
Number of directly attached neighbour buildings		0	1	-	0
National reference area (heated gross floor area based on external dimension)	m²	178	155		8221
TABULA reference area (conditioned floor area, internal dimensions)	m²	151	132	-	6988

Table 59: Exemplary new buildings representing the latest construction year classes (2011 ...)

<DK> Denmark

Building example: variants meeting three energy performance levels for new buildings

 Table 60:
 Exemplary single family house (SFH) – definition of variants

Label of the variant triplet			"SFH"			
Variant N°		001	002	003 Ambitious Standard / NZEB		
Energy Performance Level		Minimum Requirement	Improved Standard			
U-values						
Roof	W/(m²K)	0.11	0.08	0.06		
Wall	W/(m²K)	0.18	0.14	0.085		
Window	W/(m²K)	1.3	0.8	0.8		
Floor	W/(m²K)		0.08	0.06		
Thermal bridging supplement (TABULA definition)		Very low (0.02 W/(m²K))	Very low (0.02 W/(m²K))	Minimal (0 W/(m²K))		
Heat Supply System				1		
Heat generator						
Specification / Supplemental system		District Heating	District Heating	Heat Pump		
Ventilation system		Heat recovery	Heat recovery	Heat recovery		
Thermal solar system		No	No	No		

102 New Buildings in National Residential Building Typologies TABULA

Boligbyggeri	opført efter 201	0		Byggede eks	empler - enfamilie	huse	
Statistik for opført by		1		Bygningsklasse	Standard 2010	Lavenergi 2015	Bygningsklasse
	Antal [-]	Etageareal [million m ²]					
Stue- og énfamiliehu	se 15.760	2,8			Standard2010	LOW2015	NZEB20
Række-kædehuse Etageboligbygninger	5.300 790	0,9			Standard 2010	LOW2015	NZEB2U.
Etageboilgbygninger	790	1,1		Opvarmet areal			
Bygningsregl	ementets energi	krav (BR10)		[m ⁷]	178	170	122
Bygningsklasse	Standard 2010	Lavenergi 2015	Bygningsklasse 2020	Beregnet energibehov [kWh/m ²]	50,5	34,0	17,6
Energiramme* Boliger, koligier hoteller m.m. [kiWh/m* pr. 3r]	< 52,5 + 1650 / A _{op} ,	< 30,0 + 1000 / A _{ope}	< 20		U = 0,11 W/m ² K	U = 0,08 W/m ² K	U = 0,06 W/m
Energiramme** Kontorer, Skoler, Institutioner m.m. [kWh/m ³ pr. år]	< 71,3 + 1650 / A _{spa}	< 41,0 + 1000 / A ₁₀₀	<25	Lofter			
Dimensionerende	Etage [W/m ³]	Etage [W/m ³]	Etage [W/m ³]				
varmetab (ΔT=32K) pr. m ³ klimaskærm ekskl.	1 5,0 2 6,0	1 4,0 2 5,0	1 3,7 2 4,7		U = 0,18 W/m ² K	U = 0,14 W/m ³ K	U = 0,085 W/r
vinduer og døre.	3 og derover 7,0	3 og derover 6,0	3 og derover 5,7				
Krav til mindste isoleringiniveau på komponentriveau	ja	ei.	a a	Ydervægge			
Energifaktor fjernvarme	1,0	0,8	0,6		Con 2		
Energifaktor El (bygningsdrift)	2,5	1,8	1,8				L
Luftzethed ved prøvning, ved 50 Pa. [Us pr. m ³]	1,5	1,0	0,5	Gulve	U = 0,10 W/m ² K	U = 0,08 W/m ³ K	U = 0,06 W/m
Ventilation med varmeger/vinding***	Boliger η > 0,80 Andre η > 0,70	Boliger n, > 0,80 Andre n, > 0,70	η > 0,85	Guive	·······		
Ventilation: Elforbrug til lufttransport** [1/m ³]	Konstant < 1800 Variabel < 2100 Udsugningsonlæg < 800	Konstant < 1800 Variabel < 2100 Udsugningsankeg < 800	< 800				
Vinduer, E _{nt} [kWh/m ⁴ pr. år]	2-33	2 -33 (-17 fra 2015)	20		U = 1,3 W/m ² K	U = 0,8 W/m ² K	U = 0,8 W/m
Ovenlysvinduer, E., [kWh/m² pr. å/]		(>0 fr# 2015)	≥ 10	Vinduer			
Ovenlyskuplers U-værdi (W/m ³ K)		(s 1,40 fra 2015)	\$ 1,20			w	
Yderdare og lemme U-værdi (W/m³K)	1.80	1,80	Uden glas U 5 0,80 Med glas U 5 1,0 (eller Eref 2 0 kWh/m ³)		Fjernvarme	Fjernvarme	Varmepump
Porte U-værdi (W/m ¹ K)	<u></u>	1.2	\$ 1,40	Varmeforsyning			
Glasareal i forhold til gulvareal ved en lystransmittans større end 0,75 for nuderne.			Boliger, kollegier, hoteller og opholdsrum i kontorer, skoler og institutioner m.m. ≥ 15%	Ventilation med			Ja
Overtemperaturer	10 (M	Dokumentation	Dokumentation			\rightarrow	
Elevatorer	S 6+ 3	Energiklasse A	Energiklasse A				

Figure 21: "Building Display Sheet" of the exemplary SFH <DK> [SBi 2014]

Table 61: Three different exemplary SFH – Results of the energy balance calculation; Procedure: The calculation procedure in the according to the Danish building code, BR10 [BR10]

Variant N°		001	002	003
Label of the variant triplet			"SFH"	
Variation level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB
Energy standard		Standard	LOW2015	NZEB2020
Calculation method		[Be10]		
National reference area (heated gross floor area)	m²	178	170	122
Dimensioning (T _{out} =-12°C) thermal transfer coefficient by transmission. related to envelope area (not including windows and doors)	W/(m²)	4.3	3.6	2.7
Relation to requirement		86%	72%	54%
Energy need for heating	kWh/(m²a)	8.8	6.5	7.3
Delivered energy				
Fossil fuels	kWh/(m²a)	8.8	6.5	0
Renewable fuels	kWh/(m²a)	0	0	0
Electricity	kWh/(m²a)	2	2.5	9.4
Auxiliary energy	kWh/(m²a)	2	2.5	2.4
Primary energy demand	kWh/(m²a)	51	34	18
Relation to requirement		82.5%	54.6%	27.3%

*) Please note that the SFHs are not a variation of the same building but instead it is three different real examples of single-family houses built in Denmark.

TABULA calculation results for all exemplary buildings

Table 62 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

		conditions)				
Building Var. N° Var. N° Performance Level h_Transmission h_Transmission N/(m²k) q_h_nd kWh/(m²a) q_h_out kWh/(m²a) q_w_out kWh/(m²a) q_w_out kWh/(m²a) q_g_h_out kWh/(m²a) q_g_w out kWh/(m²a) q_g_w ou	q_del_sum_bio kVVh/(m²a) q_del_sum_el	kWh/(m²a) q_del_sum_dh kWh/(m²a)	q_del_sum_other k\\\h/(m²a)	q_exp_sum_el kWh/(m²a)		
SFH 01 Minimum Requirement 0.73 70 30 40 39 10 17 0 0 0	0 7	58	0	0		
02 Improved Standard 0.53 55 28 27 27 10 13 0 0 0	0 26	6 0	0	0		
ReEx.001 03 Ambitious Standard / NZEB 0.37 43 27 16 10 13 0 0 0	0 23	3 0	0	0		
TH 01 Minimum Requirement 0.53 59 31 29 28 10 17 0 0 0	0 7	47	0	0		
02 Improved 0.48 48 27 21 21 10 13 0 0 0	0 24	4 0	0	0		
ReEx.001 03 Ambitious Standard / NZEB 0.36 39 26 13 13 10 13 0 0 0	0 22	2 0	0	0		
AB 01 Minimum Requirement 0.41 51 22 29 28 15 25 0 0 0	0 13	3 56	0	0		
02 Improved Standard 0.33 36 25 12 11 15 25 0 0 0	0 10	0 37	0	0		
ReEx.001 03 Ambitious Standard / NZEB 0.31 34 24 10 11 15 18 0 0 0	0 28	8 0	0	0		
Explanation of Quantities (TABULA Datafields)						
h_Transmission W/(m ² K) floor area related heat transfer coefficient by transmission / indicator for energy quality of building	ng envelope ((compactne	ess + ins	ulation)		
	kWh/(m²a) energy need for heating					
q_ve_rec_h_usable kWh/(m²a) usable contribution of ventilation heat recovery q_h_nd_net kWh/(m²a) net energy need for heating (q_h_nd - q_ve_rec_h_usable)						
q_q_h out kWh/(m²a) generated heat heating system (net energy need + storage losses + distribution losses)						
q_w_nd kWh/(m²a) net energy need domestic hot water						
q_g_w_out kWh/(m²a) generated heat dhw (net energy need + storage losses + distribution losses)						

sum delivered energy, energy carrier gas, oil, coal, biomass, electricity, district heating, other energy carriers

Table 62:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

<u>__gw__uu</u> q_del_sum_gas, ..._oil, ..._coal, ..._bio, ..., _el, ..._dh, ..._other, ..._el q_exp_sum_el kWh/(m²a) sum produced electricity (negative value)

kWh/(m²a)

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[Be10]	Aggerholm, S. & Grau, K. Bygningers energibehov – Beregningsvejledning (In Danish). SBi-Direction 213, 2. edition. Danish Building Research Institute, Aalborg University. Hørsholm, 2010.	Users guide for the Danish compliance and energy performance certification tool, Be10.
[BR10]	Danish Building Regulations 2010 (BR10). Danish Energy Agency, Copenhagen, 2014. www.bygningsreglementet.dk	Danish Building Regulation, current and previous versions. A version is available in English.
[SBi 2014]	SBi (ed.) (2014): BYGNINGSTYPOLOGIER	Danish Building Typology Brochure

EPISCOPE

3.7 <ES> Spain

(by EPISCOPE partner IVE)

The first law to include building insulation requirement was enacted in 1979, which took some time to propagate through the whole building sector, so the first buildings including insulation were built in the early 80s. Over 60 % of the Spanish building stock was built prior to 1980, before the advent of any technical buildings standards or codes designed to regulate the quality of buildings built in Spain [Working Group for Rehabilitation "GTR", 2011].

It was not until 2006 when a more demanding legislation on energy saving was approved in the Spanish building sector. It was the "Basic Document: Energy Saving" titled CTE-HE from the "Technical Code of Buildings (CTE)". The CTE is a comprehensive legislation on building regulations that come into force in 2006. The "Technical Code of Buildings (CTE)" was the answer to the Energy Performance of Buildings Directive published in 2002 that gave the Spanish Government the chance to include more stringent energy criteria into this review, not just for the fulfilment of the EU obligations, but also for the implementation of other National Energy Policies, such as the National Energy Efficiency Plan – Energy Strategy E4 - and the Renewable Energy Plan.

Recently, in 2013, as part of the national road map for NZEB buildings, the national government conducted a review of the energy efficiency legislation and a new "Basic Document: Energy Saving" included in the "Technical Code of Buildings (CTE)" was enacted with stricter requirements for buildings. The regulation is expected to come into force during 2014. The new measures are intended to ensure that buildings constructed are of class C or higher. The approach chosen by the Spanish government to achieve a level of NZEB in 2020 is a progressive regulatory hardening, where three steps, in 2012, 2015 and 2019 were expected; however the regulatory modifications are suffering delays as the one planned in 2012 was not published until 2013.

However, even though the legislation does not currently require the levels of a NZEB there are some new constructed nZE buildings all around Spain, most of them as demonstration projects, others are official public buildings. No information about any samples of nZEB renovation is reported.

Due to the economical crisis, cuttings have seriously impacted the energy efficiency sector. There is no kind of funding for nZE buildings, moreover the grants concerning the energy saving, at national, regional and local level have been eliminated.

However, on the regional level the I.D.A.E. (Institute for the Diversification and Saving of Energy) of the Ministry of Economy of Spain provides direct aid as repayable grant through the Autonomous Communities (ACs) for investments in certain types of projects that promote energy efficiency or renewable energy. These aids include those actions that are part of the Renewable Energy Plan 2005-2010 (PER) and the 2008-2012 Action Plan of the Strategy of Energy Saving and Efficiency in Spain (E4). The respective Autonomous Communities are responsible for the development of public aid programs, but to date no program was developed for the construction or rehabilitation of nZE buildings.

3.7.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Spain

Nearly zero-energy buildings (NZEBs) have not yet been officially defined, but there are reasons to assume that NZEB buildings would be equivalent to A class.

A revision of the Spanish Energy Saving law came into force in 2013. As a next step towards nearly zero-energy buildings, it includes a tightening of the requirements for new buildings.

Minimum requirements for new residential buildings in Spain

The implementation of the Directive 2002/91/EC on the Energy Performance of Buildings (EPBD) in Spain is the responsibility of the Ministry of Industry, Energy and Tourism, and of the Ministry of Public Works and Transport.

Since the publication of the EPBD, Spain has worked to implement its transposition into national law. The initial transposition of this Directive consisted of the following official documents:

- The Technical Building Code (TBC) initially approved by the Royal Decree 314/2006, of the 17th of March, and modified by the Royal Decree 238/2013 of the 13th of April [Ministry of Housing, 2006] [Ministry of development, 2013]. This document sets the minimum requirements that must be met by all new buildings (residential, non-residential, public and private buildings), as well as by existing buildings undergoing a renovation of more than 25 % of their surface.
- The procedure for the energy certification of buildings initially approved by the Royal Decree 47/2007 Ministry of the Presidency, 2007], of the 19th of January and modified by the Royal Decree 235/2013 [Ministry of the Presidency, 2013] of the 13th of April for taking into consideration the energy certification of existing buildings and the 2010/31/EU Directive (recast of the EPBD).
- The Thermal Building Regulations initially approved by the Royal Decree 1027/2007, of the 20th of July, and modified by the Royal Decree 1826/2009, of the 27th of November, this document introduced the concept of periodic inspections on energy efficiency to be implemented by the Autonomous Communities.

In parallel, the roadmap to guide Spain towards the objectives established in the recast EPBD in terms of all new buildings becoming Nearly Zero-Energy Buildings (NZEB) from the year 2020 onwards, is already under way. The cost optimal analysis described in the recast of the EPBD has been sent to the commission.

The current energy requirements for new buildings have been introduced in the "Basic Document: Energy Saving" (Documento básico de ahorro de energía) included in the The Technical Building Code (TBC) approved in 2006. In 2013 a recast came into force including a considerable change of the requirement level. The second reinforcement of the requirements imposed by the three Royal Decrees will take place in 2016. In 2006, the use of Renewable Energy Sources (RES) became compulsory in order to meet part of the energy needs of buildings, either to produce sanitary hot water (for both residential and non-residential buildings), as set forth in the TBD DB HE4, or to produce electric power in tertiary buildings as set in the TBC DB HE5. In 2012, by the first time, the non-renewable energy consumption of residential buildings is limited as stated in the TBC DB HE 0.

The most important requirements included for residential new buildings in the 2006 Royal Decree are:

Limiting energy consumption

	Zona climática de invierno						
	α	A *	В*	C*	D	Е	
C _{ep,base} [kW·h/m ² ·año]	40	40	45	50	60	70	
F _{ep,sup}	1000	1000	1000	1500	3000	4000	

Table 64: Base value and energy consumption correction factor per surface

 * Los valores de C_{ep,base} para las zonas climáticas de invierno A, B y C de Canarias, Baleares, Ceuta y Melilla se obtendrán multiplicando los valores de C_{ep,base} de esta tabla por 1,2.

Table extracted from the "Basic Document: Energy Saving" included in the "Technical Code of Buildings (CTE)" [Ministry of Housing, 2006]

Limitation of energy demand

	Zona climática de invierno					
	α	Α	В	С	D	Е
D _{cal,base} [kW·h/m ² ·año]	15	15	15	20	27	40
F _{cal,sup}	0	0	0	1000	2000	3000

 Table 65:
 Base value and heating energy demand correction factor per surface

Table extracted from the "Basic Document: Energy Saving" included in the "Technical Code of Buildings [Ministry of Housing, 2006]

Spanish calculation method to comply with new building regulations for residential buildings

In Spain, the implementation of the EPDB is the responsibility of the Ministry of Industry, Energy and Tourism, and the Ministry of Public Works. The Institute for Energy Diversification and Saving (IDAE) also contributes to this process.

Regarding the legislation about energy certification of buildings, the Royal Decree 235/2013 approves the basic method for the energy certification of new and existing buildings. The Decree came into force on 1st of June 2013, modifying the previous legislation for new buildings that came into force in November 2007.

This procedure was carried out by the responsible organism in each Autonomous Community, who are also responsible for the registration of EPCs in his territory, external control and inspection.

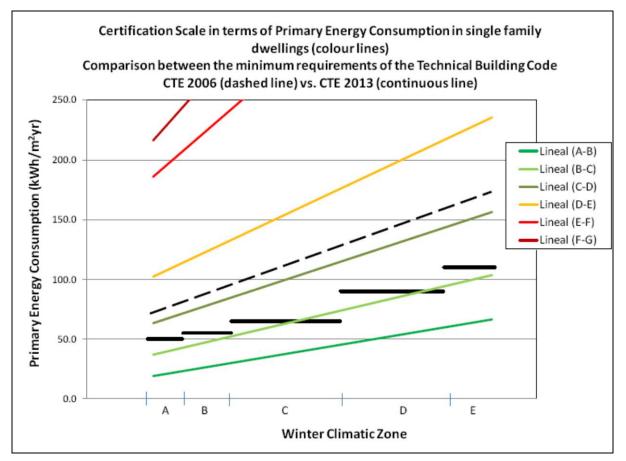
The energy rating scale in Spain ranges from A, very high performance, to G, which represents low performance. In Spain, the global rating is assessed according to the global CO2 emitted by the building (in kg CO2/m2.year), regardless of the existing partial ratings related to the several consuming energy services (heating, cooling, sanitary hot water and lighting in case of tertiary buildings) in terms of demand and final and primary energy consumption (kWh/m2.year) and in terms of emissions.

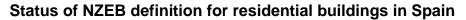
The fact that energy rating A involves a very low demand along with the contribution of renewable energies in power supply could be seen as a good starting point to specify in a precise way what could be a "nearly zero-energy building" in each of the Spanish climate areas.

There is not a mandatory minimum energy class; the Royal Decree 235/2013 only establishes the obligation to obtain an energy performance certificate to know the building rating, but in any case establishes the obligation to reach a letter. Although a new building that strictly abides by the current regulations, the Technical Building Code [Ministry of development, 2013], will be rated on the limit between B and C, due to the demand and final energy limits imposed by that legislation.

For dwellings, the calculated values of the CO2 emissions of the object building are compared with a series of reference values that vary according to the local climate, and the type of use (single-family or block of apartments), obtained from dwellings that strictly fulfils with the 2006 Technical Building Code. Thus, the energy certificate for dwelling takes into account the "design" of the building in terms of shape, compactness as well as the thermalquality of the walls, roofs, windows and ceilings and the performance of the conditioning and DHW production systems. In the Royal Decree 235/2013 of the 13th of April the procedure was modified, in the new approach the energy certification is related to the climatic zone instead of the location, thus the reference value were recalculated for the 12 climatic zones in Spain. The next figure shows a comparison between the requirements of both versions of the Technical Building Code in terms of primary energy consumption. A new building that strictly fulfils the 2013 TBC requirements will be rated between B and C depending on its climate zone [ENCERTICUS consortium, 2013].

108 New Buildings in National Residential Building Typologies TABULA




Figure 22: Scale for the energy certification of single family dwellings in all the Winter Climatic Zones in terms of the Primary Energy Consumption. Comparison of the minimum requirements of the Building Technical Codes 2006 and 2013. Source: Grupo Termotecnia – University of Seville.

As has been shown in order to obtain the energy certification in a given location it is necessary to know the climatic zone as the energy performance requirements depends on it. The climatic zoning of a location depends on the winter and summer climatic severity of this location [Salmerón et al., 2013].

The National Basic Procedure for energy certification foresees two possible ways: a simplified one (that includes any validated procedure approved by the Certification Commission) and another complex one. The last one requires the use of a software tool "CALENER", being the official one. CALENER has been developed with IDAE's sponsorship and following CEN standards to large extent. It is the reference procedure for both, new and existing buildings.

PROCEDURES – NEW BUILDINGS		USES	POSSIBLE RATING	
		Housing		
GENERAL	CALENER VyP	Small and medium tertiary buildings	From A to E	
OPTION	CALENER GT	Small and medium tertiary buildings (complex systems)		
	CALENER GI	Great tertiary buildings		
SIMPLIFIED	Calculation proce- dure 1. Simplified option	Housing (only if it is applicable the simplified option of the CTE-HE1)	D and E	
OPTIONS	Ce2			
	CERMA	Housing	From A to E	

Table 66: National Basic Procedure for energy certification of new building

TABUL

EPISCOPE

An official definition of the NZEB standard has not yet been published by the Spanish government.

The fact that energy rating A involves a very low demand along with the contribution of renewable energies in power supply could be seen as a good starting point to specify in a precise way what could be a "nearly zero-energy building" in each of the Spanish climate areas. So, despite the lack of an official definition, the A class seems to be an appropriate benchmark for the definition of the NZEB level for residential buildings in Spain.

Table 67: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Spain

		C	alculation	n Meth	od New	Building R	egulation	s – (part 1)	
Country	y ES	S S	Spain					Status	07/2014
National Requirements for New Residential Buildings							s with regard to the nal NZEB Definition		
Legisla	tion / St	andar	ds						sh NZEB definition
The procedure for the energy certification of buildings was initially approved by the Royal Decree 47/2007 of the 19th of January and modified by the Royal Decree 235/2013 of the 13th of April for taking into consideration the energy certification of existing buildings and the 2010/31/EU Directive (recast of the EPBD). Explanation / Comments							ZEB standard will comparable to an A		
	Service								
X H	leating	x	DHW	Ap	pliances				
x C	Cooling		Auxiliary	Ot	her:				
x V	entilation		Lighting						
	ion / Com								
Lighting is	s taken into	accour	t in tertiary b	uilding					
Calcula	ation Pro	ocedur	e		Cal	culation period	1		
Y	Calculation building)	of energ	y need for he	eating		Hour			
x C	Calculation	of delive	ered energy (system)		Hour			
Furthermonous hour final	ion / Com ore, the ca energy co performanc	lculation	on, by calcula	/ shall p ating the	rovide the o hourly der	calculation of t nand and calc	he hour by ulating the		
Consid	eration	of Spe	cial Tech	nologi	es				
Thermal S	Systems								
V	entilation s	system w	ith heat reco	very					
x T	hermal sola	ar syster	n						
0	Other special systems:								
On-Site E	-Site Electricity Production Feed-in			n Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹			
0	On-site CHP								
0	On-site PV								
0	ther energ	y genera	ation systems	:					
						covered by the pro			
	•		or "H-C-W-HE": H	eating - Co	oling - DHW -	Household Electric	city		
⊏xpianat	ion / Com	ments							

Table 67 (continuation)

		Calculation	Metho	d New B	uilding Regulation	is – (part 2)	
Country	ES	Spain				Status	07/2014
National R	equirer	ments for New	Resid	ential Bu	uildings		ts with regard to the onal NZEB Definition
Type of Re	quirem	nents (new bui	ldings)		U U	s not a mandatory
x U-valu	es of bui	lding elements		Primary		tion on energy s	y class, the new legisla- saving approved in 2013
	ransfer co nission	pefficient by	x	energy	non- renewable	element types a	erence U-values by and establishes a maxi-
x Energ	y need fo	r heating		Carbon d	ioxide emissions	consumption. S	o it is expected that
x Delive	red energ	ау		Other			
Consumption. So it is expected							

Tabled values of primary energy, final energy and CO2 emission conversion factors are published regularly by Institute for the Diversification and Saving of Energy (IDAE). IDAE is a public company depending on the Ministry of Industry, Tourism and Commerce. The last document was published in 2011 [IDAE, 2011]. However, the tool published by the government [Ministry of Development, 2014] to meet the requirements of the "Basic Document: Energy Saving" included in the "Technical Code of Buildings" (CTE) [Ministry of Development, 2013] includes a table of conversion factors used by the tool. Both factors are shown below.

<ES> Spain

Furthermore, at this moment there is a proposal of the Ministry of Industry, Tourism and Commerce about "CO2 emission and primary energy factors of different sources of final energy consumed in the building sector in Spain" which is being discussed.

Table 68:	Conversion factors of final energy to total primary energy, to non-renewable primary energy
	and to CO ₂ emissions included in the tool published by the government [Ministry of Develop-
	ment, 2014] to meet the requirements in force

Label / type of factor	Total Primary Energy Factor Spain	Non-Renewable primary energy factor Spain	CO₂ Emissions Factor Spain
used for EPC rating			
used for building regulations requirements		x	
Label (national language)	Factores de paso de energía final a energía primaria total	Factores de paso de energía final a energía primaria no renovable	Factores de paso de energía final a emisiones de CO ₂
Factor is multiplied by deliv- ered energy based on the	net calorific value H_i	net calorific value H_i	net calorific value H _i
Reference	[Ministry of Development, 2014]	[Ministry of Development, 2014]	[Ministry of Development, 2014]
Unit	primary kWh / final kWh	primary kWh / final kWh	kg CO ₂ / final kWh
Natural gas E	1.011	1.011	0.204
Liquid gas	1.081	1.081	0.244
Oil	1.081	1.081	0.287
Heating oil	1.000	1.000	0.280
Firewood	1.000	0.034	0.000
Wood pellets	1.000	0.085	0.000
Electricity	2.603	2.603	0.649

Table 69: Spanish primary energy and CO₂ Emissions factors published by IDAE [IDAE, 2011]

Label / type of factor	Primary Energy Factor Spain	CO ₂ Emissions Factor Spain		
used for EPC rating	x	x		
used for building regulations requirements				
Label (national language)	Factores de conversión energía final - energía primaria	Factores de emisión de CO ₂		
Description / type of weighting factor	Total primary energy; Includes losses in transformations for ob- taining fuel and / or fuel and transporting it.	In point of consumption. Used the oxidation factor according to Decision 2004/156 / EC for each of the fuels analyzed.		
Factor is multiplied by delivered energy based on the	net calorific value H _i	net calorific value H _i		
Reference	[IDAE 2011a]	[IDAE 2011a]		
Unit	primary toe / final toe	tCO ₂ / final toe		
Natural gas E	1.07	2.34		
Liquid gas	1.05	2.72		
Heating oil	1.12	3.06		
Firewood	1.25	0		
Wood pellets	1.25	0		
Electricity	2.35 primary MWh / final MWh	4.00		

Methodological points for discussion in Spain

Interesting discussion points:

- The climatic differences throughout the country represent a great challenge in defining NZEB. Currently the legislation provides different requirements depending on the climate zone, but many experts disagree with the limits for each zone as buildings in climate zones of lesser severity are forced to use more costly measures (e.g. thicker insulation) than climatic zones with greater severity.
- The Spanish government along with a majority of experts believe necessary to link the definition of NZEB to optimal cost studies to establish optimal intervention levels that are economically viable. Government is currently working on that line.
- Linked to the previous point there is an open discussion in the forums about the possibility that NZEB not have as a prerequisite to use renewable energy as the demand constraint is being proved more effective long-term.
- The CO₂ Emissions Factors are now being discussed as energy certification is based on a CO₂ emission scale. Biomass factor, now 0, and electricity current values are the figures that are being most discussed.

3.7.2 Integration of National Requirements for New Buildings and NZEB Standards in the National Residential Building Typology

A first version of a Spanish regional residential building typology was already developed by Valencia Institute of building in 2011 on the basis of the knowledge achieved during the past two decades through different research projects developed in the Valencia Region. The Spanish building typology was updated by Valencia Institute of building in 2014 according to new developments.

Valencia Institute of Building has proposed three typological classifications, one for each of the three climatic zones established by the Institute for Diversification and Energy Saving (IDAE) in the "SPAHOUSEC project (Analysis of the Energy Consumption in the Spanish Households)". This work was sponsored and funded by Eurostat. These three climatic zones have also been used for the Spanish energy retrofitting strategy developing Article 4 of Directive 2012/27/EU.

Figure 23: Territorial Distribution of Climatic Zones in Spain [IDAE, 2011b]

The current version of the Spanish building typology consists of 72 residential building types, 24 in each climate zone, classified by construction year and building size. However, as example buildings have just been defined for one climatic zone (Mediterranean), in this report only this climatic zone is discussed.

Classification scheme for the Spanish residential building stock ("Building Type Matrix")

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
13	Mediterranean climate (Clima Mediterráneo)	1900	generic	ES.ME.SFH.01.Gen	ES.ME.TH.01.Gen	ES.ME.MFH.01.Gen	ES.ME.AB.01.Gen
14	Mediterranean climate (Clima Mediterráneo)	1901 1936	generic	ES.ME.SFH.02.Gen	ES.ME. TH. 02. Gen	ES.ME.MFH.02.Gen	ES.ME. AB.02. Gen
15	Mediterranean climate (Clima Mediterráneo)	1937 1959	generic	ES.ME.SFH.03.Gen	ES.ME.TH.03.Gen	ES.ME.MFH.03.Gen	ES.ME.AB.03.Gen
16	Mediterranean climate (Clima Mediterráneo)	1960 1979	generic	ES.ME.SFH.04.Gen	ES.ME. TH. 04. Gen	ES.ME.MFH.04.Gen	ES.ME.AB.04.Gen
17	Mediterranean climate (Clima Mediterráneo)	1980 2006	generic	ES.ME.SFH.05.Gen	ES.ME. TH. 05. Gen	ES.ME.MFH.05.Gen	ES.ME.AB.05.Gen
18	Mediterranean climate (Clima Mediterráneo)	2007	generic	ES.ME.SFH.06.Gen	ES.ME.TH.06.Gen	ES.ME.MFH.06.Gen	ES.ME.AB.06.Gen

Figure 24: Classification scheme ("Building Type Matrix") of the Spanish residential building typology – region "Mediterranean Climate" (one of 3 climatic zones), including new buildings (post 2007)

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		ES.ME.SFH.06.Gen	ES.ME. TH. 06. Gen	ES.ME.MFH.06.Gen	ES.ME.AB.06.Gen
Number of dwellings		1	1	15	78
Number of full storeys (conditioned)		2	3	4	7
Number of directly attached neighbour buildings		0	2	2	0
National reference area (conditioned useful floor area)	m²	108	130	1290	6204
TABULA reference area (conditioned floor area, internal dimensions)	m²	119	143	1419	7508

Table 70: Exemplary new buildings representing the latest construction year classes (2007 ...)

Building example: variants meeting three energy performance levels for new buildings

In the frame of TABULA concept three energy performance levels were defined for new buildings constructed since 2007 in Spain. They are specified as follows:

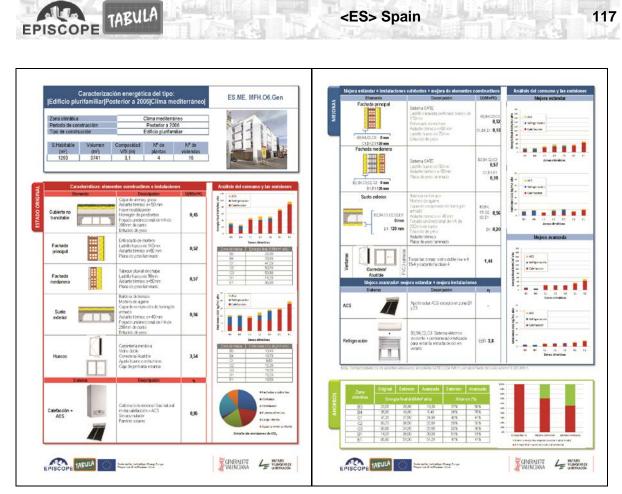
1. Minimum requirement

This level corresponds to the current state of the building designed complying with the DB-HE of the Technical Building Code approved in 2006.

2. Improved Standard

This level encompasses those measures applied on the thermal envelope that achieve boundary demand values laid down in the DB-HE of the Technical Building Code published on 12 September 2013 updating the DB-HE approved in 2006. This regulation will come into force during 2014. The measures of this first level consists of the implementation of thermal insulation in different building elements constituents of the thermal envelope as well as in improving the energy performance of windows.

3. Ambitious Standard / NZEB


The second level of improvement, called advanced level encompasses the first level measures, and additional measures required to achieve an A rating. This level could be assimilated to a NZEB. The measures encompassed in this advanced level are generally related to improving heating, cooling and DHW systems by installing cooling systems in warm areas where there were none, or by improving the existing installation for example adding renewable energy. In some types, due to parameters such as the orientation or compactness, to achieve an A, it was necessary, in addition to improving heating, cooling and DHW, the implementation of sunscreens scheduled according to the incident radiation and / or installing mechanical ventilation systems with heat recovery.

ES.ME.MFH.0	6. Gen		"Natural gas"	
Variant N°		001	002	003
Energy Performance	e Level	Minimum Requirement	Improved Standard	Ambitious Standard / NZEB
		DB-HE 06	DB-HE 13	A rating
U-values*				
Roof	W/(m²K)	0.45	0.45	0.45
Wall	W/(m²K)	0.52	0.18	0.18
Window	W/(m²K)	3.54	1.44	1.44
Floor	W/(m²K)	0.56	0.20	0.20
Thermal bridging supplement indica- tion (as used in EPC software)		Inside insulation	Continuous exterior insulation	Continuous exterior insulation
Heat and cool suppl	y System			
Heating			Gas new boiler (non-condensir	ıg)
Cooling		-	-	Heat pump
Ventilation system			-	-
Thermal solar system		Solar panels for DHW	Solar panels for DHW Solar panels for DHW	
Further system		-	-	Sunscreens scheduled according to the incident radiation

Table 71: Exemplary multi-family house (MFH) – definition of variants

* U values applied in the improvement depends on the climate zone, the U values shown are those more restrictive (D1 Zone).

<ES> Spain

Figure 25: "Building Display Sheet" of the exemplary MFH <ES> [IVE, 2014]

Table 72:	Exemplary MFH – Results of the energy balance calculation; Procedure: National Basic Pro-
	cedure for energy certification of new building

Variant N°		001	002	003				
Label of the variant triplet			"Natural gas"					
Variation level		Minimum Requirement	Improved Standard	Ambitious Standard / NZEB				
Energy standard		DB-HE 06	DB-HE 13	RD 235/2013				
Calculation method		National Basic Procedure for energy certification of existing building Simplified option CERMA						
National reference area (conditioned useful floor area)	m²	1290	1290	1290				
Thermal transfer coefficient by transmission. related to envelope area	W/(m²K)	0.88	0.41	0.41				
Relation to requirement	%	100 %	46 %	46 %				
Energy need for heating	kWh/(m²a)	63.7	28.3	28.3				
Relation to requirement	%	100 %	44 %	44 %				
Delivered energy	kWh/(m²a)	74.2	36.0	36.0				
Primary energy demand	kWh/(m²a)	75.0	36.4	36.4				

Note: the values depend on the climate zone; the values shown are those more restrictive (D1 Zone).

In this example the same supply system is used as with the demand requirements of DB-HE 13 and the existing system of DB-HE 06, the building comply the requirements of the Ambitious Standard / NZEB standard in D1 climatic zone. In other warmer climatic zones, as B3 or B4, primary energy demand is different in both levels as the supply system is different, however the differences in U-values are no so high.

117

TABULA calculation results for all exemplary buildings

Table 73 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

PE

Table 73:	Exem condi	plary new buil tions)	dings	– Re	sult	s of t	the TA	BULA	A calo	culati	ion p	oroc	ed	ure	(stan	dard	bou	nda	ıry
			1																

Building	Var. N°	Performance	Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out k\/\h/(m²a)	q_w_nd k\/\h/(m²a)	q_g_w_out k\/\h/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other k\/\h/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum quiremen		2.38	7.9	0	8	25	10	19	42	0	0	0	3	0	0	0
	02	Improved dard	l Stan-	1.13	3.5	0	3	7	10	19	20	0	0	0	3	0	0	0
ES.ME.SFH.06.Ger	03	Ambitiou dard / NZ		1.08	3.1	0	3	7	10	19	27	0	0	7	2	0	0	0
тн	01	Minimum quiremer		1.20	3.1	0	3	21	10	19	37	0	0	0	3	0	0	0
	02	Improved dard	l Stan-	0.96	2.5	0	3	6	10	19	20	0	0	0	3	0	0	0
ES.ME.TH.06.Gen	03		Ambitious Stan- dard / NZEB		2.3	0	2	6	10	19	27	0	0	7	2	0	0	0
MFH	01	Minimum quiremer		1.07	4.5	0	4	22	15	24	42	0	0	0	3	0	0	0
H.	02	Improved dard	l Stan-	0.53	2.2	0	2	6	15	24	23	0	0	0	3	0	0	0
ES.ME.MFH.06.Ger	03	Ambitiou dard / NZ		0.50	1.9	0	2	6	15	24	34	0	0	6	2	0	0	0
AB	01	Minimum quiremer		0.96	3.0	0	3	21	15	24	41	0	0	0	3	0	0	0
	02	Improved dard	l Stan-	0.49	1.5	0	2	6	15	24	23	0	0	0	3	0	0	0
ES.ME.AB.06.Gen	03	Ambitiou dard / NZ	ΈB	0.47	1.2	0	1	6	15	24	34	0	0	6	2	0	0	0
Explanation o	f Quant																	
h_Transmission		W/(m ² K)	floor area			er coeffi	cient by t	transmis	sion / inc	dicator fo	or energy	y quality	of buildi	ng envel	ope (cor	mpactne	ss + insu	ulation)
q_h_nd q_ve_rec_h_usab	ما	kWh/(m²a) kWh/(m²a)	energy ne			ition hos	tracovor	Ω.										
q_h_nd_net	IC .	kWh/(m²a)																
q_g_h_out		kWh/(m²a)																
q_w_nd		kWh/(m²a)																
q_g_w_out																		
q_del_sum_gas, . coal,bio, . dh,other,	, _el,	kWh/(m²a)	sum delive			05		0				heating	, other e	nergy ca	irriers			
q_exp_sum_el		kWh/(m²a)	sum produ	iced electi	ricity (ne	gative va	alue)											

3.7.3 Sources / References Spain

Table 74: Sources / References Spain

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[ENCERTICUS consortium, 2013]	ENCERTICUS consortium, National reports on energy certification of buildings, SPAIN, 2013	
[IDEA, 2011a]	IDAE, Factores de conversión energía final -energía primaria y factores de emisión de CO2 – 2011	
[IDAE, 2011b]	IDAE, Análisis del consumo energético del sector resi- dencial en España, INFORME FINAL ; July 2011	
[IVE, 2014]	A. García-Prieto Ruiz, Begoña Serrano Lanzarote, Leticia Ortega Madrigal, Catálogo de tipologia edificatoria residencial. Àmbito: Espana. IVE, Septiembre, 2014	
[Ministry of Devel- opment, 2013]	Ministry of Development. Technical Building Code. Regulation, Madrid: Government of Spain, 2006	
[Ministry of Devel- opment, 2014]	Ministry of Development. LIDER-CALENER unified tool, Madrid: Government of Spain, 2014	
[Ministry of Hous- ing, 2006]	Ministry of Housing. Technical Building Code. Regula- tion, Madrid: Government of Spain, 2006	
[Ministry of the Presidency, 2007]	Ministry of the Presidency, Royal Decree 47/2007, of 19 January, by which the basic procedure for certification of energy efficiency of new buildings was approved, Madrid: Government of Spain, 2007	
[Ministry of the Presidency, 2013]	Ministry of the Presidency, 235/2013 Royal Decree of 5 April, by which the basic procedure for the certification of the energy performance of buildings is approved, Madrid: Government of Spain, 2013	
[Salmerón et al., 2013]	J. Salmerón, S. Álvarez, JL Molina, A. Ruiz, F. Sánchez, Tightening the energy consumption of buildings depend- ing on their tipology and on Climate Severity Indexes, Building and Environment 58 (2013) 372-377	
[Working Group for Rehabilitation "GTR", 2011]	Working Group for Rehabilitation "GTR", A National Perspective on Spain's Buildings Sector. A Roadmap for a New Housing Sector. November 2011	

3.8 <FR> France

(by EPISCOPE partner Pouget)

France introduced the first thermal legislation in 1974 [RT 1974]. Before buildings were mostly not insulated and equipped with single glass windows. The level of energy requirements of this regulation was about one third lower than the average energy consumption of the existing building stock at this time.

However, in France scientific research about reduction of energy use in buildings already started in the fifties [ADEME 2011]. In 1971 the inter-ministerial program "Plan Construction" was installed, launching several ambitious research programs about solar and bioclimatic houses (since 1979: "Habitat original par la thermique (HOT)", since 1983: "Habitat Économe en Énergie à l'horizon1985 (H2E85)" [Nicolas 1977] [Alexandroff 1979] [COMES 1981] [Daussy 1983] [Olive 1989].

In parallel low energy prices and the pushing of electric heating in the context of the development of a large nuclear plant stock slow down the dissemination and generalisation of energy efficient buildings. France building sector fell behind on energy efficiency progress in other European countries for a couple of decades.

This gap was closed with the introduction of the thermal legislation of 2012 [RT 2012]. It is considered as the second efficiency revolution in the building sector after introduction of first legislation in 1974, lowering the requirement level by half.

The RT 2012 was prepared by the energy label BBC (Bâtiment Basse Consommation) carried out by the NGO Effinergie and established as legal energy label in 2007. It was inspired by the Switzerland energy label Minergie. The approach and calculation method are based on thermal legislation of 2005 (RT 2005) and it fixed the maximum primary energy demand for heating, cooling, DHW, lighting and auxiliaries at 50 kWh/(m².yr), modulated by coefficients from 0.8 to 1.3 according to the 8 climate zones. Between 2007 and 2014, more than 335 000 new dwellings were certified BBC [Effinergie 2014]. The energy performance of those buildings can be compared to low energy houses in other European countries, announcing heating needs between 25 and 45 kWh/(m².yr)²⁴ depending on climate zone.

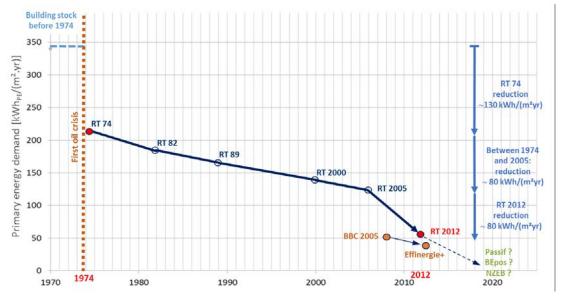


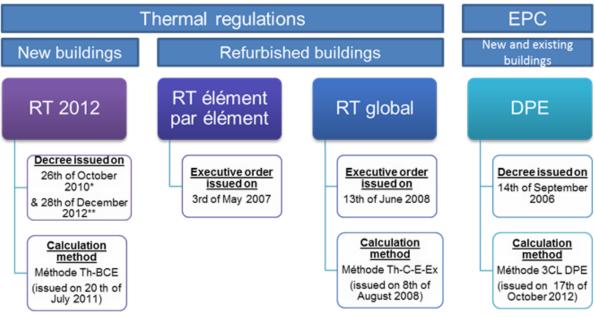
Figure 26: Evolution of primary energy demand for heating, cooling, DHW, lighting, ventilation and auxiliaries for residential buildings with fossil combustibles in climate zone H2 [Pouget 2014]

²⁴ per m² of habitable surface

This requirement level was more or less integrated to the RT 2012. The new legislation introduced furthermore the bioclimatic need (Besoin bioclimatique Bbio) as a new requirement. It unites need for heating, cooling and lighting calculated with standard conditions into one parameter assessing the bioclimatic quality of the building.

New constructions going further than legal requirements towards energy efficiency are at present marginalized. It concerns mainly buildings respecting energy labels like Effinergie+, Passivhaus, Minergie-P or Bepos-effinergie. About 1 000 dwellings are already certified according to one of this labels and about 12 000 are under way.

There is no legal energy label associated to the RT 2012. French government installed a work group to elaborate the basis of a new environmental label for new buildings which will integrate energy performance and other environmental criteria. Results are expected by next year (2015) [PRB 2013].


French government estimates in its report to the European Commission of 16th of January 2013 that the requirement level of RT 2012 corresponds to NZEB [France 2013]. Apart from that indication in this specific report, there is, for the moment, no other documents in France mentioning an official definition of Nearly Zero-Energy Buildings (NZEBs).

On the other hand there is a large discussion about Bâtiments à Énergie POSitive (BEPOS, Buildings with positive energy) which were announced in the Act Grenelle 1 [Grenelle 1 2009]. Generally speaking it describes a building producing more energy than it needs. But more detailed definitions differ considerably in requirements toward the building performance and the energy uses taken into account (see below).

3.8.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in France

The last amendment of French Thermal Regulation came into force for all new constructions in January 2013.

The situation of thermal legislation and EPC calculation in France is quite complicated regarding requirements towards new constructions and refurbishments, legal texts and calculation methods. The following figures (Figure 27 and Figure 28) explain the main differences.

* Residential buildings and some non-residential buildings (office, educational and early childhood centers)

** All other non-residential buildings

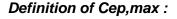
Figure 27: Legal status of thermal regulations and EPC [Pouget 2014]

EPISCOPE TABULA	<fr> France</fr>	123

	New buildings	Existing buildings	EPC
Reference surface	Gross floor area SHON RT	Gross floor area SHON	Living area SHAB
Energy uses	Heating, Cooling, DHW, Lighting, Auxiliaries	Heating, Cooling, DHW, Lighting, Auxiliaries	Heating, Cooling, DHW
Calculation method	Th-BCE 2012	Th-CE-Ex	3CL DPE
Calculation scale	Building	Building	Dwelling

Figure 28: Differences between thermal regulations and EPC calculation [Pouget 2014]

By reasons of the shown differences, the results of EPC and thermal regulation calculations can't be compared.


Minimum requirements for new residential buildings in France

The French Thermal Regulation of 2012 for new constructions includes essential changes comparing to the last regulation of 2005:

- RT 2012 abandon the approach of comparison with a reference building to define the requested level like it was done in RT 2005. In contrast it imposes maximum values for primary energy demand depending on the climate zone, building use, average scale of dwellings and use of renewable energy carriers.
- RT 2012 introduces the bioclimatic need (Besoin bioclimatique Bbio) as a new requirement to assess the bioclimatic quality of the building.
- A new calculation method was elaborated (Th-BCE-2012).
- Climatic data of the 8 climate zone were adapted to the global warming what leads to higher average temperatures.
- A new reference surface was introduced (Shon_{RT}) which is about 5 % to 15 % larger than the previous one (Shon). Shon_{RT} is the gross floor area. In residential buildings it is between 20 % and 35 % larger than the habitable surface.

RT 2012 fixes three global requirements:

- Respect of a maximum primary energy demand for heating, cooling, DHW, lighting and auxiliaries. It's the Cep,max (Consommations en énergie primaire) expressed in kWh_{PE}/(m².yr).
- Respect of a maximum number of points of the bioclimatic need taking into account heating, cooling and lighting. It's the Bbio,max (Besoin bioclimatique) expressed in points.
- Respect of a maximum conventional interior temperature to justify admissible summer comfort. It's the Tic,réf (Température intérieure conventionnelle) expressed in °C.

 $Cep,max = 50 \times Mc$ type $\times (Mc$ géo + Mc alt + Mc surf + Mc GES) [$kWh_{PE}/(m^2.yr)$]

Mc type: Depends on the building use and the belonging to categories CE1 or CE2 (without / with cooling). Mc type = 1.0 (CE1) or 1.2 (CE2) for residential buildings

Mc géo: Depends on climate zone

Dependa or	bepends on climate zone											
Zone	H1a	H1b	H1c	H2a	H2b	H2c	H2d	H3				
Mc géo	1.2	1.3	1.2	1.1	1.0	0.9	0.9	0.8				
- ·												

Mc alt: Depends on altitude of the site

Mc surf: Depends on average size of the dwellings. Takes into account higher specific DHW need in small dwellings

Mc GES: Depends on main energy carrier for heating and DHW. Use of wood or urban heat out of renewable energy allow higher primary energy consumption.

The initial value for multi-family houses is 57.5 instead of 50 until 31st of December 2014.

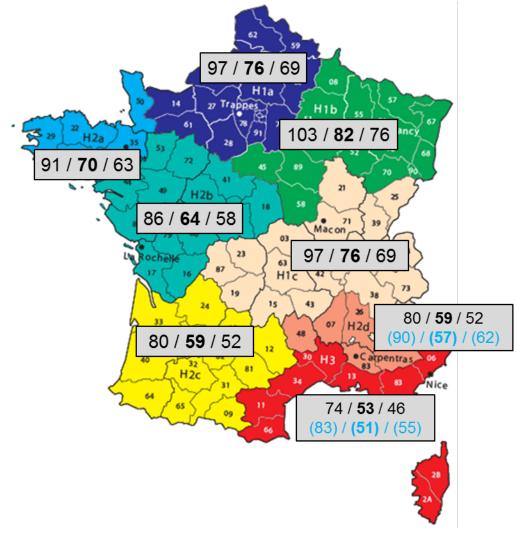


Figure 29: Values of Cep,max in kWh_{PE}/(m².yr) for multi-family houses in the 8 climate zones (Mc GES = 0, average size of dwellings 30 / 60 / 90 m², altitude <400 m, CE1 / CE2) [Pouget 2011]

The calculation of the Cep of the project can take into account electricity production on site issued of PV or cogeneration up to an amount of $12 \text{ kWh}_{PE}/(\text{m}^2.\text{yr})$.

Definition of Bbio, max :

Bbio,max = Bbio,max moyen × (Mb géo + Mb alt + Mb surf)

Bbio,max moyen depends on the building use and the belonging to categories CE1 or CE2 (without / with cooling). Bbio,max moyen = 60 (CE1) or 80 (CE2) for residential buildings

Mb géo: Depends on climate zone

Mb alt: Depends on altitude of the site

Mb surf: Depends on size of the dwelling (only single family houses)

The calculation of the Bbio of the project takes into account the need for heating, cooling and lighting:

Bbio = $2 \times heating demand + 2 \times cooling demand + 5 \times lighting demand$

Additional requirements

In parallel to the three global requirements RT 2012 has several specific requirements:

- Single family houses has to use renewable energy for a part of their energy demand:
 - $\circ~$ by solar thermal system for DHW with a collector size corresponding to 2 m² orientated south
 - o by using urban heat issued of more than 50 % of renewable energy or heat recovery
 - by demonstrating that renewables energies contribute with at least 5 kWh_{PE}/(m².yr) to the Cep
 - As alternative to those points the requirement is fulfilled if the building use a thermodynamic system for DHW production with COP>2.0 or a mini-cogeneration with thermal efficiency > 90 % and CHP coefficient > 0.1
- Residential buildings have to proof the airtightness of the envelope by pressure test. Maximum values for q_4 at 4 Pa are 0.6 m³/(h.m²) for SFH and 1.0 m³/(h.m²) for MFH.
- Residential buildings need a minimum window surface of 1/6 of habitable surface.
- Requirements toward solar protections and minimum opening surfaces
- Requirements towards measurement of energy consumption and information of the occupants.
- Several requirements towards regulation of heating or cooling systems and lighting in common areas of multi-family houses.

Calculation method of the Thermal Regulation RT 2012 for new residential Buildings

The legal calculation method is called Th-BCE 2012 [Th-BCE 2012]. It's a complete scheme for the calculation of residential and non-residential buildings and includes calculation modules for heating, cooling, DHW production, artificial lighting and ventilation systems and a primary energy based energy carrier assessment. It also includes a module to calculate the conventional interior temperature for the reference and the real project. Multi-zone calculations are possible.

Calculation is based on hourly energy balance for one year. The method is using climatic data according to EN ISO 15927-4 for the reference stations of 8 climatic zones.

The primary energy factors to be used for calculation issuing are the agreed weighting factors for energy carriers in France:

2.58 kWh_{PE}/kWh_{FE} for electricity

1.0 kWh_{PE}/kWh_{FE} for all other energy carriers

Energy delivered by solar thermal systems on side is directly subtracted from the energy demand. Electricity out of PV or cogeneration on site is weighted with 2.58 kWh_{PE}/kWh_{elec}.

126 New Buildings in National Residential Building Typologies TABULA

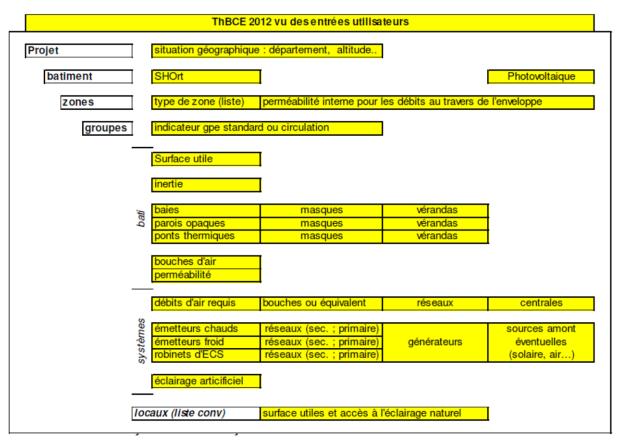


Figure 30: Schema of the structuring of input data of Th-BCE 2012 calculation method [Th-BCE 2012]

French EPC calculation method for new residential Buildings

Like described in the introduction, EPC calculation is quite different from Thermal Regulation calculation.

- The calculation takes into account only heating, cooling and DHW production
- The result is expressed per m² of habitable surface and not of gross floor area
- The calculation is realised for each dwelling and not for the whole building
- The calculation method is different from the method for Thermal Regulation

Three calculation methods are applicable, introduced by Executive Order of 9th of November 2006:

- DEL6-DPE and Comfie-DPE, which are based on hourly simulation
- 3CL-DPE, much less complex than the other ones and mostly used for EPC calculations. Latest actualisation of 3CL-DPE is from 17th of October 2012 [3CL-DPE 2012].

The results of the calculation are expressed in

- Delivered energy in kWh/yr
- Annual energy cost in EUR/yr
- Primary energy demand in kWh_{PE}/yr
- Primary energy demand in kWh_{PE}/(m².yr)
- GHG emissions in kg_{CO2}/(m².yr)

Logement énergivore

<FR> France

Consommations and	nuelles par én	ergie				
obtenues par la méthode 3	CL, version 15C, p	rix moyens (des énergies index	és au 15/08	/2006	
	Consommat énergies f		Consommations en énergie primaire	Frais a	innuels ie (TTC)	
	détail par énergie en kWł		détail par usage en kWh _{EP}			
Chauffage	Electricité : 2086	54 kWhef	53829 kWhep	189	90€	
Eau chaude sanitaire	Electricité : 7080) kWhef	18265 kWhep	46	3€	
Refroidissement	-		-		-	
Abonnements	-		-	42	3€	
CONSOMMATION D'ENERGIE POUR LES USAGES RECENSES	27943 kWhef		72094 kWhep	27	77€	
	tions énergétiq	ues	Émissi	ons de ga	z à effet d	e serre
Pour le chauffage, l sanitaire et		u chaude nt	Pour le cha san	(-		eau chaude ient
Consommation convention	onnelle : 352 kV	Wh _{EP} /m².an	Estimation des é	missions :	20 kg	_{co2} /m².an
Logement économe		Logement	Faible émissio	on de GES		Logement
≤ 50 A			≤5 A			
51 à 90 B			6 à 10 B			
91 à 150 C			11 à 20	С		20
151 à 230 D			21 à 35	D		kg éqco2/m².an
231 à 330	E		36 à 55	E		
331 à 450	F	352 kWh ep/m².an	56 à 80		F	
> 450	G	www.ep/m*.an	> 90		G	

Figure 31: Example for results out of EPC calculation [DPE OPHM 2009]

Status of NZEB definition for residential buildings in France

For the moment there is no official definition of Nearly Zero-Energy Buildings (NZEBs) in France. Discussions are mainly focused on what is called "Bâtiments à Énergie POSitive" (BEPOS, Buildings with positive energy).

Forte émission de GES

G

Different approaches to define a BEPOS are observed:

- Buildings respecting RT 2012 requirements with compensation of primary energy demand of heating, cooling, DHW, lighting and auxiliaries by renewable electricity generation on site with annual balancing. Calculation with calculation method Th-BCE 2012. Most BEPOS projects in France use this definition.
- Buildings respecting a more ambitious energy level than RT 2012 (e.g. Cep ≤ 0.9 x Cep,max) with compensation of primary energy demand of heating, cooling, DHW, lighting and auxiliaries by renewable electricity generation on site with annual balancing. Calculation with calculation method Th-BCE 2012. This definition was used for a call of projects by the ADEME Ile-de-France [ADEME 2014].

- The association Effinergie²⁵ developed last year the label Bepos-effinergie [Effinergie 2013]. It has three main requirements:
 - 1. The building has to respect requirements of the energy label Effinergie+ what corresponds mainly to a reduction of 20% of the Cep,max and Bbio,max according to RT 2012:

TABUL

Cep,max_{effinergie+} = 0,8 x Cep,max_{RT2012}

Bbio,max_{effinergie+} = 0,8 x Bbio,max_{RT2012}

- 2. The embodied energy and the potential of eco-mobility must be evaluated
- The balance between non-renewable energy demand and energy production on site (Bilan_{epnr}) mustn't exceed a maximum permitted difference (Ecart_{autorisé}): Bilan_{epnr} ≤ Ecart_{autorisé}

Electricity Natural Gas

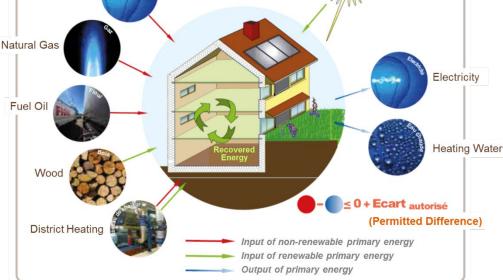


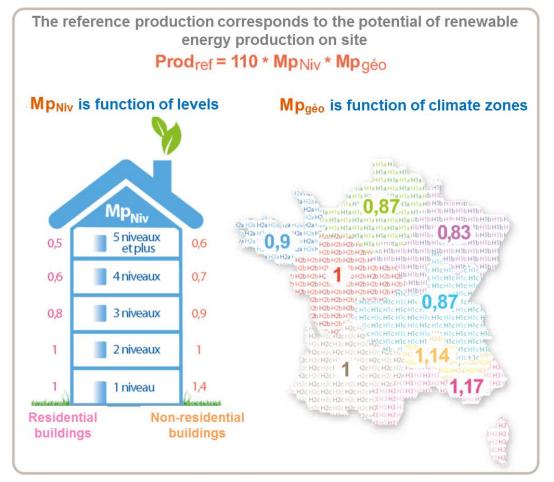
Figure 32: Principe of energy balance for Bepos-effinergie label [Effinergie 2013]

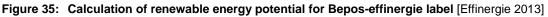
Energy	Energy input	Energy output
Electicity	2,58	-2,58
Wood	0	
District heating out of renewable energies	0,5 or part of non-renewable	
Other district heating	1,0	
Gas, fuel, other	1,0	

Following primary energy factors are used for the balance calculation:

Figure 33: Primary energy factors Bepos-effinergie [Effinergie 2013]

²⁵ Effinergie association in France is comparable to Minergie in Suisse and Passivhaus Institute in Germany. It was created in 2006 and promotes low energy buildings, in new constructions or refurbishments. They were at the origins of the "BBC-Effinergie" label in France, in 2007.


The permitted difference $\text{Ecart}_{\text{autorisé}}$ is calculated by adding the maximum primary energy demand according to Effinergie+ label and the reference consumption of primary energy for all uses which are not taken into account by regulation (specific demand for household appliances, consumer electronics...) and by subtracting the reference production corresponding to the potential of renewable energy production on site: Ecart_{autorisé} = Cep,max_{effinergie+} + Aue_{réf} – Prod_{réf}


<FR> France

	Aue _{réf} [kWh _{PE} /(m².yr)]
Residential buildings	70
Office buildings	100
Educational buildings, schools, crèches	30

Figure 34: Values for reference consumption of primary energy for all uses which are not taken into account by regulation for Bepos-effinergie [Effinergie 2013]

The potential of renewable energy production on site depends of number of building levels and on climate zone:

The label is based on legal calculations of RT 2012. It takes into account all energy uses on site. The perimeter can be one or more buildings concerned by one building license or a development plan.

First buildings are certified "Bepos-effinergie".

 Another approach considers that energy demand of the buildings has to be reduced further down to passive house level what allows easier to cover the energy demand of all energy uses by renewables energy produced on site or nearby [Rochard 2012]. A passive single family house in the north-east of France only needs about 40 m² of PV panels to cover the whole primary energy demand.

Passive house standard requires a maximum heating demand of 15 kWh/(m².yr) and a primary energy demand for all energy uses in the building of 120 kWh_{PE}/(m².yr). The values have to be calculated with the Passive House Planning Package (PHPP) for the local climate.

Considering the wide range of climate conditions in France, the energy performances of the thermal envelope and the HVAC systems of a passive house differs considerably between the north-east and the south of France. Three major zones – almost identical to the 3 superordinate climate zones of thermal regulation H1, H2 and H3 – can be defined regarding the required performances to meet passive house level:

 Figure 36:
 French climatic zones and segmentation for different passive house variants

 [Pouget 2014]
 French climatic zones and segmentation for different passive house variants

- North, east and centre of France (climate zone H1 + H2b-NE, lightly bluish coloured): Quality of thermal envelope and systems correspond to build passive houses in Middle Europe (Germany, Switzerland...): U-values of opaque envelope between 0.10 and 0.15 W/(m²K), triple-glazed windows, balanced ventilation with high efficient heat recovery.
- Western and south-western France (climate zone H2 without H2b-NE, yellowy coloured): Reduced envelope performance is possible, e.g. using of double-glazed windows.
- Southern France (climatic zone H3, in red): Passive house level corresponds to effinergie+ label, what means further reduced envelope performance and no need of balanced ventilation with heat recovery.

If that way energy demand stays more or less at the same level in each zone, it is all the easier to compensate energy demand by PV when going to the south.

Table 75: Overview features current Thermal Regulation Calculation Method compared to the assumed NZEB definition for residential buildings in France

<FR> France

			С	alculation	Metho	d New	Building R	egulation	s – (part 1)			
Cour	ntry	FR	FF	RANCE					Status	15/07/2014		
Natio	onal Red	quirer	nen	ts for New	Reside	ential E	Buildings		Special Aspects with regard to the assumed French NZEB Definition			
Legis	n n n n n n n n n n n n n n n n n n n									ch NZEB definition until ible approach is the		
Régler	Réglementation Thermique 2012 [RT 2012] pl									oped label "BEPOS-		
	Explanation / Comments RT 2012 is applied in France since 1 st of January 2013 for all new residential build-									eloped by the associa-		
ings	12 is appli		lance	SINCE I UI J	anuary 2	010101 a	in new resident					
Ener	gy Serv	vices								finergie label also takes		
x	Heating		х	DHW	App	iances				energy uses not con- ulation with a reference		
х	Cooling		x	Auxiliary	Othe	er:			consumption of	f primary energy (for		
x	Ventilati		x	Lighting						ential buildings: 70		
-	nation / C			na talian inta a						Office buildings 100 (this method is on		
All the	energy us	ses on s	site a	re taken into a	account.				process and is	not definitive)		
Calc	ulation	Proce	dur	e		Cal	culation period		Same calculation method than thermal regulation 2012.			
x	Calculat (building		energ	y need for hea	ating		Hour					
x	Calculat	tion of c	lelive	red energy (sy	/stem)		Hour					
•	nation / C											
							for a whole ye	ar.				
	siderational System		Spe	cial Techn	ologies	5			Same calculation method than thern regulation 2012.			
X	-		em w	ith heat recove	ery							
x	Thermal	•										
x	Other sp	ecial sy	/stem	IS:	Biomas	s stoves						
On-Sit	e Electrici	ty Prod	uctio	n	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹				
x	On-site	СНР			х							
x	On-site	PV			х							
	Other er	nergy ge	enera	tion systems:								
							covered by the pro Household Electric					
 ity; self use considered for "H-C-W-HE": Heating - Cooling - DHW - Household Electricity Explanation / Comments On-Site Electricity Production: The thermal regulation doesn't make differentiation between "feed-in" and "self-use". In the thermal regulation, for residential buildings, a maximum amount of primary 												
							taken into aco					

Table 75 (continuation)

	Calculation Method New Building Regulations – (part 2)												
Country	FR	France		Status	15/07/2014								
Type of Re	quirem	ents (new buil	Label BEPOS-Effinerg	ie:									
	ansfer co	ding elements pefficient by	x	Primary energy	Agreed weighting factors	Main requirement: Balance of non-renewable primary energy ≤ permitted difference							
Energy	need fo	r heating		Carbon d	ioxide emissions	Bilan _{epnr} ≤ Ecart _{aut}	orisé						
Deliver	ed energ	lУ	x	Other	Bbio*, Tic	The permitted difference							
	bioclima building;	atic need (Besoin Tic means summer			assess the bioclimatic nperature (Température	three elements: Cepref + Aueref - I Cepréf is the referent of primary energy a Effinergie+ label for the account by regulation (Heating, DHW, Room ing, Auxiliary electricity Aueréf is the referent of primary energy for a not taken into account (e.g. 70 kWh _{PE} /(m ² yr) f Prodréf is the referent corresponding to the pu- newable energy product	nce consumption ccording to the e uses taken into cooling, Light- for HVAC) nce consumption Il uses which are by regulation or dwellings) nce production otential of re-						

Table 76: Overview features current EPC calculation method compared to the assumed NZEB definition for residential buildings in France

<FR> France

EPC Calculation Method New Buildings											
Cour	ntry	FR	FF	RANCE					Status	15/07/2014	
	ulation w Res			Special Aspects with assumed National NZ							
Legis	slation	/ Stan	Idarc								
3-CL-D	OPE (EP	C calcul	ation r								
Explai	nation /	Comme	nts								
The El	PC calcu	lation m	ethod								
Energy Services											
x	Heating	g	x	DHW	Арр	iances					
x	Cooling	g		Auxiliary	Othe	er:					
	Ventila	tion		Lighting							
	nation /										
Calcu	ulation	Proce	edur	e		Cal	culation period	ł			
x	Calcula (buildir		energy	y need for he	ating		Year				
х	Calcula	ation of o	delive	red energy (s	ystem)		Year				
	No cal	culation	proce	dure / only se	eparate re	quireme	nts for compor	nents			
Explai	nation /	Comme	nts								
Cons	siderati	ion of	Spe	cial Techn	ologie	S					
Therm	al Syster	ns									
х	Ventila	tion syst	tem wi	ith heat recov	rery						
х	Therma	al solar s	system	า							
х	Other s	pecial s	ystem	IS:	Biomas	s stoves					
On-Sit	e Electric	city Proc	ductior	n	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹			
	On-site	CHP									
	On-site	PV									
	Other e	energy g	enera	tion systems:							
	¹ "self us ity; self	e" = parts (use consid	of the el dered fo	ectricity demand or r "H-C-W-HE": He	of the buildir ating - Cooli	g is directly ng - DHW -	covered by the pro Household Electric	oduced electric- city			
Explai	nation /	Comme	nts								
Туре	of Ene	ergy C	arrie	er Assessi	nent						
x	Deliver	ed energ	gу								
х	Primary energy demand						Agreed weigh	ting factor			
х	Carbon dioxide emissions						Non-renewab	le			
х	Energy	costs									
	Other:										
-	nation /										
	rimary er other ene			l is calculated	d with ag	reed wei	ghting factors	(electricity:			

French Thermal Regulation in 2000 [RT 2000] defined for the first time legal factors to convert delivered energy to primary energy in context of thermal regulation calculations. Since then the official primary energy factors didn't change and the values were reconfirmed in the legal texts for the following thermal regulations and the EPC calculation method.

There are only two factors:

2.58 kWh_{PE}/kWh_{DE} for electricity **1.0** kWh_{PE}/kWh_{DE} for all other energy carriers

Those factors don't reflect physical reality, they are only agreed factors. No distinction is made between renewable and non-renewable part. Concerning combustibles, the factor is based on delivered energy with net calorific value. Table 77 also reflects a conversion with regards to gross calorific values. The ratio between both has to be taken into account for each combustible:

Natural gas:	gross calorific value = 1.11 net calorific value
Liquid petrol gas	gross calorific value = 1.09 net calorific value
Fuel oil:	gross calorific value = 1.07 net calorific value
Coal:	gross calorific value = 1.04 net calorific value

Label / type of factor	Primary Energy Factors France	Primary Energy Factors France (converted)
used for EPC rating	x	
used for building regulations requirements	х	
Label (national language)	Coefficient de conversion de l'énergie primaire en énergie finale PCI	Coefficient de conversion de l'énergie primaire en énergie finale PCS
Description / type of weighting factor	Agreed factors, no distinction between renewable and non-renewable parts	Agreed factors, no distinction between renewable and non-renewable parts
Factor is multiplied by delivered energy based on the	Net calorific value	Gross calorific value
Reference	[RT 2012]	[RT 2012]
Fuel	1.0	0.935
Natural gas	1.0	0.900
Liquid gas	1.0	0.917
Electricity	2.58	2.58
Biomass	1.0	1.0
District heating without CHP	1.0	1.0
District heating with 67 % CHP	1.0	1.0
District heating with 100 % CHP	1.0	1.0
District heating biomass without CHP	1.0	1.0

Table 77: French primary energy factors

Methodological points for discussion in France

The most relevant discussion points are:

The introduction of RT 2012 with its strong tightening of requirements obligates to change
a lot on traditional way of design and construction methods in the building sector. This
happens not without difficulties encountered by building-owners, planers and building
companies. In the context of an important slowdown of the construction sector in France
the last years this leads to a discussion about complexity of regulations in the building
sector and legal calculations. A workgroup was implemented by the government to sim-

plify legislation [France 2014]. Several propositions to lighten requirements of the RT 2012 are analysed, e.g. changing modulation for little buildings, extend exception for multi-family houses to consume 15 % more primary energy, lighten requirement toward minimal window surface and thermal bridges.

- Direct electrical heating is still widespread in French buildings. Part of stakeholders in the energy and building sector blame the RT 2012 for penalising electric heating. They argue that French electricity production has very low greenhouse gas emissions (75 % of electricity production are out of nuclear plants and 15 % out of hydrodynamic power) what is not taken into account by Thermal Regulation [EDEN 2014]. It seems very probable that criteria on greenhouse gas emissions will be introduced in parallel to primary energy criteria in the future environmental label and legislation.
- Regarding the implementation of NZEB and Bepos there is a large discussion about the preconditions to integrate electricity from renewable sources into the French energy system [CRE 2014]. Main points are:
 - Reflections about the scale of Bepos projects. At the moment the approach is basically focused on one building. But the tendency goes to a bigger scale like city block or urban quarter.
 - Reflections who to manage disparity between PV production in summer and higher energy need in winter. Eventual adaptation of balancing periods instead of yearly balance.
 - Valorisation of self-use of electricity produced in connection with buildings.
 - Development of energy storage capacities on each level, for short, medium or long periods and valorisation of storage capacities in the building.
 - Development and generalisation of smart grid in order to manage disparities of demand and production and valorisation of energy management on building level.
- At the moment priority is given by the government to actualise the thermal regulation for energy refurbishments and to harmonise the calculation methods for new and existing buildings. Work on that amendment is in progress and results are expected next year.

In parallel a workgroup elaborates the basis of a new environmental label for new buildings witch will prepare the future legislation [PRB 2013].

3.8.2 Integration of National Requirements for New Buildings and NZEB Standards in the French Residential Building Typology

A complete version of the national residential building typology was developed in 2012 within the scope of the program RAGE (Règles de l'Art Grenelle de l'Environnement 2012) [RAGE 2012]. It describes a total of 26 types of building families, their urbanistic and architectural characteristics, typical construction methods and elements and major building equipment.

During the TABULA project a French residential building typology was developed within the common TABULA concept. During the EPISCOPE project this typology was actualized and datasets of existing buildings for each building category were entered to the TABULA data structure. The existing set of building pictures was replaced by photos of the existing buildings. The actual typology represents only partly the real building stock with regard to the large diversity of French building stock.

Classification scheme for the French residential building stock ("Building Type Matrix")

E

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	National	1914	generic	FR.N.SFH.01.Gen	FR.N.TH.01.Gen	FR.N.MFH.01.Gen	FR.N.AB.01.Gen
2	National	1915 1948	generic	FR.N.SFH.02.Gen	FR.N.TH.02.Gen	FR.N.MFH.02.Gen	FR. N. AB. 02. Gen
3	National	1949 1967	generic	FR.N.SFH.03.Gen	FR.N.TH.03.Gen	FR.N.MFH.03.Gen	FR. N. AB. 03. Gen
4	National	1968 1974	generic	FR.N.SFH.04.Gen	FR.N.TH.04.Gen	FR.N.MFH.04.Gen	FR.N.AB.04.Gen
5	National	1975 1981	generic	FR.N.SFH.05.Gen	FR.N.TH.05.Gen	FR.N.MFH.05.Gen	FR. N. AB. 05. Gen
6	National	1982 1989	generic	FR.N.SFH.06.Gen	FR.N.TH.06.Gen	FR.N.MFH.06.Gen	FR.N.AB. 06. Gen
7	National	1990 1999	generic	FR.N.SFH.07.Gen	FR.N.TH.07.Gen	FR. N. MFH. 07. Gen	FR.N.AB.07.Gen
8	National	2000 2005	generic	FR.N.SFH.08.Gen	FR.N.TH.08.Gen	FR.N.MFH.08.Gen	FR. N. AB. 08. Gen
9	National	2006 2012	generic	FR.N.SFH.09.Gen	FR. N. TH. 09. Gen	FR.N.MFH.09.Gen	FR.N.AB. 09. Gen
10	National	2012	generic	FR.N.SFH.10.Gen	FR.N.TH.10.Gen	FR.N.MFH. 10. Gen	FR.N.AB. 10. Gen

Figure 37: Classification scheme ("Building Type Matrix") of the French residential building typology including new buildings since 2012

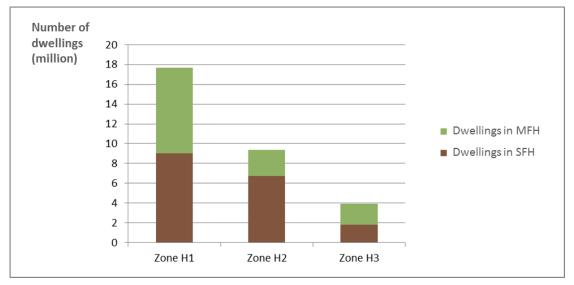
During the IEE Project EPISCOPE the building type matrix was extended towards new buildings, reflecting the current legal requirements. Figure 37 shows the respective matrix. Three further examples buildings have been identified which are now used for showcase calculations reflecting possible practical implementations of new buildings according to the national minimum requirements and future NZEB standards (Table 78).

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		FR.N.SFH.10.Gen	FR.N.TH. 10. Gen	FR.N.MFH. 10. Gen	FR. N. AB. 10. Gen
Number of dwellings			- FR.IN. TH. 10. Gen		29
Number of dwellings		1	1	9	29
Number of full storeys (conditioned)		2	1	3	6
Number of directly attached neighbour buildings		0	1	0	0
National reference area (Shon _{RT} / gross floor area)	m²	131.4	104	591	2606
TABULA reference area (conditioned floor area, internal dimensions)	m²	103.4	93	539	2210

 Table 78:
 Exemplary new buildings representing the latest construction year classes (2012 ...)

Building example: variants meeting three energy performance levels for new buildings


In the frame of TABULA concept three energy performance levels were defined for new buildings constructed since 2013 in France. They are specified as follows:


Energy Performance levels France

- "Minimum Requirements" ("RT 2012") Combination of building and supply system that exactly complies with the current minimum legal requirements of RT 2012 in all 8 climate zones. Zone H2 is the critical one and values in Table 80 correspond to zone H2b. The relation to requirement doesn't vary a lot in the other zones. Lowest value is 92 % in H1c.
- "Improved Standard" ("effinergie+") Level of effinergie+ label corresponding to an improvement of 20 % compared to legal requirements. Valuable for all climatic zones.
- 3. "Ambitious Standard / NZEB" ("Passive House")

Level of passive houses. The adjustment was made by PHPP calculation and the described quality of thermal envelope is valid for climate zone H1a witch can be considered as average climate for climate zone H1. The thermal quality of thermal envelope can be reduced in climate zone H2 towards values for effinergie+ standard but maintaining balanced ventilation with heat recovery. In climate zone H3 passive house standard is identical to effinergie+ standard.

The distribution of dwellings between the 3 superordinate climate zones is very unequal. Regarding the existing building stock more than half of total dwellings and three-fourths of dwellings in multi-family houses are in zone H1. Only about 15 % of the dwellings are in zone H3.

EPISCOPE

Figure 38: Distribution of dwellings depending on climate zones in France [INSEE 2006]

In the following the exemplary multi-family house is demonstrated in more detail. Table 79 shows the building features for different performance levels. The real building is realised as passive house.

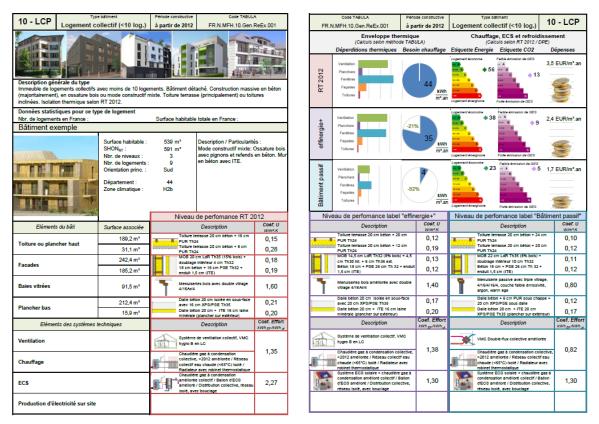


Figure 39: "Building Display Sheet" of the exemplary MFH.10 <FR>

FR.N.M	IFH. 10. Gen			"Natural Gas"							
Variant N°			1	2	3						
			Minimum Requirement	Ambitious Standard / NZEB							
Energy Performa	nce Level		RT 2012	Passive House in zone H1							
U-values	U-values										
Roof	W/(m²ł	<)	0.17	0.13	0.10						
Wall	W/(m²ł	<)	0.18	0.13	0.11						
Window	W/(m²ł	<)	1.60	1.40	0.80						
Door	W/(m²ł	<)	2.00	2.00	1.20						
Floor	W/(m²ł	<)	0.21	0.17	0.12						
Thermal bridging (whole envelope)	supplement	W/(m²K)	0.10	0.05	0.02						
Heat Supply Syst	em										
Heat generator			Central condensing boiler								
Specification / Sup	plemental sy	/stem									
Ventilation system			Exhaust air	Exhaust air	Heat recovery						
Thermal solar syst	iem			DHW	DHW						

Table 79: Exemplary multi-family house (MFH) – definition of variants

In Table 80 results of the national energy balance calculation (second method, see above) are displayed.

Table 80: Exemplary MFH – Results of the energy balance calculation; Procedure: Method Th-BCE 2012

Variant N°		1	2	3					
Label of the variant triplet		"Natural Gas"							
Variation level		Minimum Requirement	Improved Standard	Ambitious Standard / NZEB					
Energy standard		RT 2012 climate zone H2b	Passive House climate zone H1						
Calculation method		RT 2012 / Method Th-BCE 2012							
National reference area Shon _{RT} *	m²		591						
Besoin bioclimatique Bbio	Points	56.4	44.5	33.6					
Relation to requirement		94%	74%	46%					
Relation to reference standard		-	93 %	100 %**					
Energy need for heating	kWh/(m²yr)	25.2	19.7	11.6					
Energy need for DHW	kWh/(m²yr)	25.3	13.5	16.6					
Delivered energy									
Fossil fuels	kWh/(m²yr)	50.5	33.2	24.9					
Lighting	kWh/(m²yr)	2.0	2.0	2.1					
Auxiliary energy	kWh/(m²yr)	2.1	2.8	6.5					
Primary energy demand	kWh/(m²yr)	61.8	46.8	48.6					
Relation to requirement		99 %	75 %	66 %					

*) Surface hors œuvre nette RT 2012 **) relation to requirement of 15 kWh/(m².yr) for heating demand, calculated with PHPP

TABULA calculation results for all exemplary buildings

Table 51 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all four exemplary buildings.

Table 81:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions, climate zone: FR.N)

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas k/\h/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal k/\h/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other k/\h/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum Requirement	1.00	57	0	57	50	10	10	0	0	0	0	31	0	0	0
	02	Improved Standard	0.90	50	0	50	43	10	10	0	0	0	0	28	0	0	0
FR.N.SFH.10.Gen	03	Ambitious Standard / NZE	в 0.70	41	16	25	22	10	10	0	0	0	0	18	0	0	0
тн	01	Minimum Requirement	1.10	64	0	64	57	10	10	75	0	0	0	9	0	0	0
	02	Improved Standard	0.70	44	0	44	37	10	10	49	0	0	0	9	0	0	0
FR.N.TH. 10.Gen	03	Ambitious Standard / NZE	в 0.50	32	15	17	12	10	10	16	0	0	0	11	0	0	0
MFH	01	Minimum Requirement	0.70	44	0	44	44	15	17	96	0	0	0	3	0	0	0
	02	Improved Standard	0.50	35	0	35	35	15	16	65	0	0	0	4	0	0	0
FR.N.MFH.10.Gen	03	Ambitious Standard / NZE	в 0.30	18	14	4	4	15	16	22	0	0	0	6	0	0	0
AB	01	Minimum Requirement	0.50	37	0	37	37	15	15	0	0	0	0	3	76	0	0
	02	Improved Standard	0.40	30	0	30	30	15	15	0	0	0	0	3	68	0	0
FR.N.AB.10.Gen	03	Ambitious Standard / NZE	в 0.20	18	15	3	3	15	15	0	0	0	0	5	35	0	0
Explanation of Q	uanti				-												
h_Transmission			rea related h		fer coeffi	cient by	transmis	sion / ind	dicator fo	or energ	y quality	of buildi	ng enve	lope (co	mpactne	ss + insi	ulation)
q_h_nd q_ve_rec_h_usable			need for he contribution		ation hea	t recove	rv										
q_h_nd_net			ergy need fo					sable)									
q_g_h_out		kWh/(m2a) genera	ated heat hea	ating syst	em (net e				sses + d	istributic	n losses	5)					
q_w_nd			ergy need do														
q_g_w_out		kWh/(m ² a) genera	ated heat dhy	v (net en	ergy nee	a + stora	ige losse	es + distr	Inoituai	osses)							
q_del_sum_gas,oil, coal,bio,, _el,		kWh/(m ² a) sum d	generated heat dhw (net energy need + storage losses + distribution losses) sum delivered energy, energy carrier gas, oil, coal, biomass, electricity, district heating, other energy carriers														

..._coal, ..._bio, ..., el, kWh/(m²a) sum delivered energy, energy carrier gas, oil, coal, biomass, electricity, district heating, other energy carriers ..._dh, ..._other, ..._el q_exp_sum_el kWh/(m²a) sum produced electricity (negative value)

3.8.3 Sources / References France

Table 82: Sources / References France

Reference shortcut	Concrete reference (in respective language)	Short description (in English)				
[3CL-DPE 2012]	Ministry of Energy and Sustainable Development (2012): Arrêté du 17 octobre 2012 modifiant la méthode de calcul 3CL-DPE introduite par l'arrêté du 9 novembre 2006 portant approbation de di- verses méthodes de calcul pour le diagnostic de performance énergétique en France métropolitaine	Executive order modifying "3-CL DPE" calculation method				
[ADEME 2011]	ADEME (2011): Histoire de la recherche sur l'enveloppe du bâtiment	Research study on building envelope				
[ADEME 2014]	ADEME (2014): Appel à projets Session 3 : BE- POS : Bâtiments à Energie Positive et BEPAS : Bâtiments Passifs, Règlement de l'appel à projets	Call for a project on NZEB and passive buildings, rules of the call				
[Alexandroff 1979]	Alexandroff, G.; Liebard, A (1979): L'habitat so- laire: comment?, L'équerre Editeur, Editions Apo- gée, Paris	Solar habitats				
[COMES 1981]	Ministère de l'environnement et du cadre de vie, COMES, Plan Construction (Editions du Moniteur) (1981): Des maisons solaires dès aujourd'hui	Solar individual houses				
[CRE 2014]	Commission de régulation de l'énergie (2014): Synthèse de la consultation publique de la Com- mission de régulation de l'énergie sur le dévelop- pement des réseaux électriques intelligents en basse tension	Synthesis on the development of electric intelligent network of the public consultation of the energy regulation commission				
[Daussy 1983]	Daussy, J.; Trichard, M. (1983): Pour une meil- leure maîtrise de l'énergie dans le secteur résiden- tiel et tertiaire	Mastering energy in residential and non-residential buildings				
[DPE OPHM 2009]	Extrait d'un DPE réalisé pour l'OPH Montreuillois réalisée par ACETEC (2009)	Energy Performance Certificate's extract from an OPHM's building				
[EDEN 2014]	Association Equilibre des Energies (2014): Com- muniqué de presse de l'association Equilibre des Energies	Press release of Equilibre des Energies associa- tion				
[Effinergie 2013]	Collectif Effinergie (2013): Règles techniques applicables aux bâtiments faisant l'objet d'une demande de label Bepos-effinergie, version 1	BEPOS Effinergie label's technical rules				
[Effinergie 2014]	Collectif Effinergie (2014): TABLEAU DE BORD 2014 de la labellisation BBC-Effinergie	BBC-Effinergie label's				
[France 2013]	Ministry of Energy and Sustainable Development, DHUP (2013): Plan d'action pour la généralisation des bâtiments dont l'énergie est quasi nulle	National plan for Nearly Zero-Energy buildings Report submitted to the European Commission in 2013				
[France 2014]	Working group of Plan Bâtiment Durable on "Ob- jectif 500 000" topic (2014): Objectif 500 000, Simplifier la réglementation et l'élaboration des normes de construction et de rénovation, Rapport du groupe de travail n°1	Working group of Plan Bâtiment Durable on "Build- ing 500 000 new buildings", first report of the group				
[Grenelle 1 2009]	Ministry of Energy and Sustainable Development (2009): LOI n° 2009-967 du 3 août 2009 de pro- grammation relative à la mise en œuvre du Gre- nelle de l'environnement	Grenelle de l'Environnement's official law docu- ment				
[INSEE 2006]	INSEE (2006): Enquête Nationale Logement réalisée par l'INSEE	French national building enquiry				
[Nicolas 1977]	Nicolas, F.; Vaye, M. (1977): Recherches sur les enveloppes bioclimatiques, la face cachée du soleil	Research study on bioclimatic design				
[Olive 1989]	Olive, G; Bornarel, A. (1989): Quelques tech- niques innovantes pour l'habitat	A review of innovative construction techniques for buildings				
[PRB 2013]	Working group of Plan Bâtiment Durable on "Ré- flexion Bâtiment Responsable 2020-2050" topic (2013): Embarquement immédiat pour un bâti sobre, robuste et désirable ; Rapport d'étape du groupe « Réflexion Bâtiment Responsable 2020- 2050	Working group of Plan Bâtiment Durable on "Re- sponsible Building Reflexions" (next thermal regu- lation), first report of the group				

142 New Buildings in National Residential Building Typologies

Reference Concrete reference (in respective language) Short description (in English) shortcut [Pouget 2011] Pouget A., production en interne pour présenta-Internal production for presentations tions (2011) [Pouget 2014] Rochard U., Shanthirabalan S., production en interne pour présentations et/ou pour le présent Internal production for presentations rapport (2014) [Rochard 2012] Rochard, U. (2012): Vers des bâtiments zéro énergie grâce aux bâtiments passifs - La discus-Contribution to the Passibat conference: passive sion internationale sur les Net Zero Energy Builbuildings towards NZEB dings et la situation en France, Paris [RT 1974] Ministry of Energy and Sustainable Development (1974): Arrêté du 10 avril 1974 relatif à l'isolation Executive order of 1974's French thermal regulathermique et au réglage automatique des installation for newly built constructions tions de chauffage dans les bâtiments d'habitation, 1974 [RT 2000] Ministry of Energy and Sustainable Development (2000): Arrêté du 29 novembre 2000 relatif aux Executive order of 2000's French thermal regulation for newly built constructions caractéristiques thermiques des bâtiments nouveaux et des parties nouvelles de bâtiments, 2000 [RT 2012] Ministry of Energy and Sustainable Development (2010): Arrêté du 26 octobre 2010 relatif aux Executive order of 2010's French thermal regulacaractéristiques thermiques et aux exigences de tion for newly built constructions performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments, 2010 [Th-BCE 2012] Ministry of Energy and Sustainable Development (2013): Arrêté du 30 avril 2013 portant approbation de la méthode de calcul Th-BCE 2012 prévue aux articles 4, 5 et 6 de l'arrêté du 26 octobre 2010 Executive order of 2012's French thermal regularelatif aux caractéristiques thermiques et aux tion's calculation method exigences de performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments, 2013

TABULA

3.9 <GB> England

(by EPISCOPE partner BRE)

The UK Government has a target for all new homes in England to be 'zero carbon' from 2016. This policy is aligned with the Energy Performance of Buildings Directive, which requires all new buildings to be near Zero Energy Buildings (nZEB) from 2020.

NZEB's build on the history of low energy buildings in the UK. Since the 1970s a wide variety of low energy housing projects have been developed in different parts of the country (including notable early projects at Milton Keynes). In 2005 an 'Innovation Park' was established on the Building Research Establishment's (BREs) main site at Garston, providing demonstration of a number of low to zero carbon homes, showcasing and providing a test bed for innovative construction and technologies. This, together with other projects around the country, are further promoting and helping the construction industry to deliver low to zero carbon homes.

Energy efficiency standards are described in the UK using the Government's Standard Assessment procedure (SAP) [DECC/BRE, 2014], which also forms the basis of the Energy Performance Certificates (EPCs). These standards have been improved with each revision of Building Regulations, with the intention of fulfilling the commitment of Zero Carbon new homes being built by 2016.

3.9.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in England

Energy conservation was introduced into Building Regulations around the 1970s, initially in terms of insulation U-values. Requirements have been improved in successive revisions of Approved Document Part L1 of the Regulations, and in 1995 a SAP calculation was introduced as a method of compliance. The latest revision of AD L1A came into force in April 2014 [HM Government, 2013], and is another step towards Government commitment of Zero Carbon homes by 2016.

England calculation method to comply with new building regulations for residential buildings

The Government's Standard Assessment Procedure (SAP) is used for assessing the energy performance of dwellings. The indicators of energy performance are Fabric Energy Efficiency (FEE), energy consumption per unit floor area, energy cost rating (the SAP rating) and Dwelling CO_2 Emission Rate (DER).

The SAP rating is based on the energy costs associated with space heating, water heating, ventilation and lighting, less cost savings from energy generation technologies. It is adjusted for floor area so that it is nearly independent of dwelling size for a given built form. The SAP rating is expressed on a scale of 1 to 100, the higher the number the lower the running costs.

The Dwelling CO_2 Emission Rate is used for testing compliance with building regulations. It is equal to the annual CO_2 emissions per unit floor area for space heating, water heating, ventilation and lighting, less the emissions saved by energy generation technologies, expressed in kgCO₂/m²/year.

The SAP methodology is compliant with the Energy Performance of Buildings Directive, and the indicator of energy performance used for issuing Energy Performance Certificates (EPCs) is the SAP rating, on a scale of 1 to 100.

Reduced Data SAP (RdSAP) was introduced in 2005 as a lower cost method of assessing the energy performance of existing dwellings. Since this report is about new dwellings it is not considered here.

Minimum requirements for new residential buildings in England

Practical guidance about compliance with the requirements of the Building Regulations 2010 for England is given in a series of documents which have been approved by the Secretary of State (AD L1A) [HM Government, 2013].

The Target CO₂ Emission Rate (TER) and Target Fabric Energy Efficiency (TFEE) are minimum energy performance requirements for a new dwelling, calculated using the latest version of SAP (SAP2012) [DECC/BRE, 2014].

- The TER is a target CO₂ emissions per square metre of floor area per year (kg $CO_2/m^2/yr$)
- The TFEE is a target energy demand per square metre of floor area per year (kWh/m²/yr)

The TER is calculated for a dwelling of the same size and shape as the actual dwelling, using a set of reference values (e.g. U-values, airtightness, gas fuel, heating system efficiency and controls). The space heating and hot water CO_2 emissions value is adjusted using a fuel factor (e.g. gas 1.0, oil 1.17, electricity 1.55), before adding the CO_2 emissions values for pumps, fans and lighting. This total gives the TER.

The TFEE is also calculated for a dwelling of the same size and shape as the actual dwelling, using the same set of reference values (e.g. U-values, airtightness, gas fuel, heating system efficiency and controls). This is multiplied by 1.15 to give the TFEE.

The Dwelling CO_2 Emission Rate (DER) and Dwelling Fabric Energy Efficiency (DFEE) must be no worse than the TER and TFEE, to meet the requirements of Building Regulations.

In addition to this, there are four further requirements.

- The performance of individual fabric elements (e.g. walls, roof, floor) and fixed building services (e.g. heating system) must be no worse than a set of defined values listed in AD L1A.
- The dwelling should have appropriate passive control measures to limit the effect of heat gains on indoor temperatures in summer. (Guidance is given in AD L1A).
- The performance of the dwelling as built should be consistent with the DER and DFEE. (Guidance is given in AD L1A).
- The necessary provisions for enabling energy efficiency operation of the dwelling should be put in place. (Guidance is given in AD L1A).

Status of NZEB definition for residential buildings in England

The UK Government already has a target for all new homes in England to be 'zero carbon' from 2016 and an ambition for all new non-domestic buildings in England to be zero carbon from 2019 (2018 for new public sector buildings).

The proposed definition of a Zero Carbon new home [ZCH, 2014] consists of three core requirements.

- Reduce energy demand through fabric energy efficiency. The fabric performance of the property must, at a minimum, comply with the Fabric Energy Efficiency Standard (FEES). This is measured in terms of kWh/m²/year energy demand.
- 2. Any CO₂ emissions that remain after consideration of fabric performance, heating, cooling, fixed lighting and ventilation, must be less than or equal to the Carbon Compliance limit established for Zero Carbon homes. This is measured in kg/m²/year of CO₂.
- 3. Any remaining CO₂ emissions, from the use of regulated energy sources in the property, must be reduced to zero. This requirement can be met by either overperforming on requirements 1 & 2, or by investing in off-site carbon reduction projects via Allowable Solutions [DCLG, 2014].

Further details are not yet available, but are likely to follow the existing methods already in use for building regulations and the EPC methodology (i.e. SAP based calculations for CO_2 and energy use.

145

Table 83: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in England

			C	Regulation	s – (part 1)					
Cour	ntry GB England							Status	July 2014	
Natio	National Requirements for New Residential Buildings								Special Aspects v (assumed) Nation	with regard to the al NZEB Definition
Legis	slation	/ Stand	darc	ls					The UK Governme approach they are	ent consider that the adopting for Zero
2012 e	dition (S	AP2012	versi	Assessment F on 9.92), date Vales) [DECC/	d Octob	er 2012 (m 2016 will meet the
Explai	nation /	Commen	nts							
Ener	gy Ser	vices								
x	Heating	g	x	DHW	Арр	liances				
x	Cooling	9	х	Auxiliary	Othe	er:				
х	Ventila	tion	х	Lighting						
Coolin	g system		t usu	ally installed ir ghting, cooking	0		•			
Calcu	ulation	Proce	dur	e		Cal	culation perio	bd		
x	Calcula (buildir		nergy	y need for hea	ting		Mon	th		
x	Calcula	ation of d	elive	red energy (sy	vstem)		Mon	th		
Explai	nation /	Commen	nts							
Cons	siderati	ion of S	Spe	cial Techno	ologie	5				
Therm	al Syster	ns								
x	Ventilat	tion syste	em wi	ith heat recove	ery					
х	Therma	al solar sy	/sten	n						
x	Other s	pecial sy	stem	IS:		AP Appe /BRE, 20		more details		
On-Sit	e Electric	city Produ	uctior	ı	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use consid- ered for H-C-W-HE ¹		
x	On-site	CHP			x	x	Year	H-C-W-HE*		
x	On-site	PV			х	x	Year	H-C-W-HE*		
x	Other energy generation systems:									
	Hydro-	electric,	Wind	turbines	x	x	Year	H-C-W-HE*		
	¹ "self us ity; self	e" = parts of use conside	f the el ered fo	ectricity demand o r "H-C-W-HE": Hea	f the buildir ating - Cool	ig is directly ng - DHW -	covered by the Household Elec	produced electric- tricity		
•		Commen ctricity or		cludes fixed li	ghting a	nd energ	y for pumps :	and fans in		

Table 83 (continuation)

			Calculation	uilding Regulation	s – (part 2)			
Cour	ntry	GB	England				Status	July 2014
Natio	onal Re	quiren	nents for New	Resid	ential Bu	ildings	Special Aspects with (assumed) National N	
Туре	of Red	quirem	ents (new buil	dings)			
x	U-value	es of buil	ding elements		Primary			
x	Heat tra transm		efficient by		energy			
	Energy	need for	heating	x	Carbon d	ioxide emissions		
	Delivered energy x Other air permeabilityheat- ing efficiency & controls				ing efficiency &			
same values heatin 1.0, oi fans a The Taing of ence contro In add fixed b values The E metric also sl	size and s, airtight g and ho il 1.17, e nd lightin arget Fat the sam values (e ls). This lition, the building s s U has s across I hows a ra	shape a ness, ga t water C lectricity g. This to oric Energe e size an e.g. U-va is multipli perform ervices (uggestec Member 1 ating in te	s the actual dwellin is fuel, heating sys CO2 emissions valu 1.55), before addi- otal gives the TER. gy Efficiency (TFEE id shape as the ac- alues, airtightness, ied by 1.15 to give ance of individual f e.g. heating system	g, using stem ef ue is ad ng the f tual dwo gas fu the TFE abric el n) must onsump C rating ons and	g a set of re- ficiency an justed usin- CO2 emiss n ² /yr) is als elling, using el, heating E. ements (e.g be no wors be no wors be no wors be no term primary en	0,		

Assessment of energy carriers in England

In the UK the energy performance of buildings is normally assessed using the following.

- The 'SAP rating', based on annual energy costs and adjusted for floor area to be nearly independent of dwelling size for a particular house type; used for EPCs.
- CO₂ equivalent emissions per unit floor area per year (kgCO₂/m²/yr); for Building Regulations.
- Primary energy may also be calculated but is not often used.

The SAP rating is the 'Energy Efficiency' rating on UK Energy Performance Certificates, and for each fuel (energy carrier) takes account of the cost per kWh and standing charge. These costs are averages for the previous three years, to reduce the effect of short term fluctuations. They are derived using information from a specialist consultant and updated every six months.

 CO_2 equivalent annual emissions are used for calculation of the DER and TER to determine compliance with Building Regulations. The kg CO_2 /kWh factors for each fuel (energy carrier) are updated with each revision of SAP, approximately every three years. The following describes some key issues relating to their derivation.

CO₂ equivalent emissions

Carbon dioxide (CO₂) is one of the main products of fuel combustion, however, N₂O and CH₄ are also side products of the fuel combustion process or released directly from the energy supply chain. N₂O and CH₄ have global warming potentials of 21 and 310, compared to 1 for CO₂. The global warming impact of CH₄ and N₂O is generally small compared to that of CO₂ for most fossil fuels, but can be significant, in particular for fuels from biomass sources. Taking account of CH₄ and N₂O provides a more accurate reflection of the impacts of energy use, therefore the current SAP 2012 emission factor methodology includes the impacts of CO₂, CH₄ and N₂O measured as CO₂e (CO₂ equivalent).

Upstream transport emissions and emissions sources outside of the UK within the system boundary

In addition to the emissions released directly from fuel combustion there are other emission sources that occur upstream of the final user. These include fugitive emissions, such as natural gas leakage, and emissions arising from fuel and electricity used during production and distribution. The system boundary starts when production begins: for fossil fuels this will be extraction, and for fuels derived from biomass this will be cultivation. For waste products this will be transportation from the location where the waste is produced. The final stage included in the boundary is energy use in the building.

Taking account of emissions associated with transporting fuels and extending the coverage of upstream emissions beyond the UK boundary is appropriate because GHG emissions have a global impact and this methodology more accurately reflects the total environmental impacts. This could be particularly important for imports of liquefied natural gas where upstream emissions from compression and shipping are significant. The emission factor methodology therefore includes transport emissions and emissions that occur outside of the UK for energy imports in so far as data availability allows.

Grid supply fuels displaced by onsite generation (e.g. electricity exported to the grid)

In previous versions of SAP, a marginal emission factor was applied to electricity exported to the grid, whilst the system average value was applied to grid electricity supply. This was to encourage greater take up of on-site electricity generation. It was justified on the basis that it would lead to additional energy savings in comparison to those included in the system average emission factors as, at that time, on-site renewable electricity generation was not explicitly included in the energy projections.

This use of a marginal emission factor has been removed in the current SAP 2012 methodology as policies are in place to support the uptake of on-site electricity generation and these are included in the electricity generation projections and hence the system average values. Furthermore, it removes the inconsistency in the treatment of different types of carbon saving technologies²⁶. System average emission factors are therefore applied to both energy use and to avoided grid supply energy generation, for example electricity exported to the grid from on-site generation.

Emission factors apply to the relevant compliance period

For most energy sources the carbon impacts are not expected to change over time so the current emission factor may be used. This is not the case for grid supply energy sources, in particular for electricity where substantial changes in the generation mix can be anticipated. In addition it was necessary to consider the impact of increasing amounts of imported lique-fied natural gas (LNG) in the UK gas grid on the emission factor for mains gas.

²⁶ E.g. on site renewable electricity generation compared to increased equipment energy efficiency.

For the previous SAP methodology, SAP 2009, the electricity emission factor was based on the projected average value between 2010 and 2015. This reflected the timescale of its use for new build projects, i.e. three year compliance period plus two years between approval and completion.

A longer term forecast provides a better basis for considering future policy options, and from a design perspective it better reflects the lifetime of the building. However, disadvantages include increased uncertainty about the future mix of energy supply, and also changes to building services can significantly affect the actual energy performance. In addition there is a concern that an emission factor that expects decarbonisation of the grid could encourage building designers to choose an electric, rather than fossil fuel, heating system, and as a result increase the electricity demand so it greatly exceeds projections.

Exclusion of carbon dioxide emissions from combustion of bio-genic fuel sources

Carbon emissions that arise directly from the combustion of bio-genic materials (derived from plant or animal sources, provided they are derived from sustainable biomass sources) form part of the carbon cycle and so do not lead to a net increase in atmospheric CO₂ emissions over the long term. Thus, excluding carbon dioxide arising directly from combustion of bio-genic carbon is justified and in line with major end user carbon accounting methodologies e.g., GHG reporting protocol [WBCSD, 2005].

In the UK most biomass sources are from proven sustainable sources, much of which is derived from the waste stream, so excluding carbon dioxide emissions from bio-genic sources is entirely appropriate. However direct emissions of CH₄ and N₂O from combustion and all other non-bio-genic upstream GHG emission sources should be included. Carbon dioxide emissions from the combustion of bio-genic fuel sources are therefore excluded from the SAP emission factors.

Primary energy factors

SAP 2012 is required to calculate primary energy consumption in line with the requirements of the recast EPBD. The definition of primary energy used to calculate the SAP factors can be summarised as follows: Primary energy includes all energy found in nature that has not been subjected to any conversion or transformation process. It includes the energy contained in raw fuels as well as other forms of energy received as input to the energy supply system. Primary energy covers both renewable and non-renewable energy sources and the definition used here is in accordance with EN 15316-4-5 which states that "....Waste heat, surplus heat and regenerative heat sources are included by appropriate primary energy factors."

Whilst for most fuels defining this is relatively straightforward there are some fuels where it is less clear. To treat the electricity generated by solar, hydro, wind generation, biomass sources and waste as primary energy a statistical convention assigns these a primary energy factor of 1 at the point of generation. Any subsequent energy use associated with the distribution of energy from renewable sources and losses are included in the primary energy factor.

Electricity generated from nuclear sources is often derived from plutonium which is not naturally occurring and is therefore classed as a secondary energy source. So the primary energy factor should also take account of energy use associated with nuclear fuel processing as well as thermal losses during steam generation and subsequent generation and supply of electricity.

In the current SAP 2012, primary energy factors include renewable and non- renewable sources and are determined using the same scope and timeframe used to calculate the CO_2 emission factors.

Label / type of factor	Primary Energy Factors GB / England	CO2 Equivalent Factors GB / England			
used for EPC rating		x			
used for building regulations re- quirements		x			
Label (national language)	SAP 2012 methodology	SAP 2012 methodology			
Description / type of weighting factor	Incorporating upstream losses etc. Full details can be found [BRE, 2011].	Based on CO ₂ e emissions, incorporating additional upstream losses etc. Full details can be found [BRE, 2011].			
Factor is multiplied by delivered energy based on the	Gross calorific value $\rm H_{\rm s}$	Gross calorific value $\rm H_{s}$			
Reference	[DECC/BRE, 2014]	[DECC/BRE, 2014]			
Unit		kg CO ₂ per kWh			
Natural gas	1.22	0.216			
Liquid gas	1.09	0.241			
Heating oil	1.10	0.298			
Coal	1.00	0.394			
Electricity	3.07	0.519			

Table 84: Primary Energy Factors and CO2 emission factors

Methodological points for discussion in England

Allowable Solutions: The UK has a target for all new homes to meet the Zero Carbon Standard from 2016, however the government has recognised that it is not always technically feasible or cost effective to meet the zero carbon homes standard purely through measures on site, so while stretching on site standards from 2016, there will also be put in place a flexible mechanism to meet the remainder of the zero carbon target by allowing off-site carbon abatement termed 'allowable solutions' [DCLG, 2014].

3.9.2 Integration of National Requirements for New Buildings and NZEB Standards in the English Residential Building Typology

The basis of the data used for the English results is the English Housing Survey. The English Housing Survey is a survey carried out in England annually to collect information about householders, their housing condition and energy efficiency. The key aspects of information collected include dimensions/dwelling size, energy, disrepair and hazards and other household information. The Survey is split into 2 parts,

- A household interview around 13,300 householders per year
- Physical inspection by a qualified surveyor of a sample of properties 6200 properties per year

Analysis of the data is typically conducted on two or more years of combined data.

Е

The building type matrix has been extended for new buildings, reflecting the current requirements for new build [HM Government, 2013], and also improved and exemplary buildings reflecting the target of zero carbon new build in 2016. Figure 40 shows the matrix of all dwelling types considered in the English typology.

	Denien	0		CELL	T 11	DAT!!	
	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	England	1918	generic	GB.ENG.SFH.01.Gen	GB. ENG. TH. 01. Gen	GB.ENG.MFH.01.Gen	GB. ENG. AB. 01. Gen
2	England	1919 1944	generic	GB.ENG.SFH.02.Gen	GB. ENG. TH. 02. Gen	GB.ENG.MFH.02.Gen	GB. ENG. AB. 02. Gen
3	England	1945 1964	generic	GB.ENG.SFH.03.Gen	GB. ENG. TH.03. Gen	GB.ENG.MFH.03.Gen	GB. ENG. AB. 03. Gen
4	England	1965 1980	generic	GB.ENG.SFH.04.Gen	GB. ENG. TH.04. Gen	GB.ENG.MFH.04.Gen	GB. ENG. AB. 04. Gen
5	England	1981 1990	generic	GB.ENG.SFH.05.Gen	GB. ENG. TH. 05. Gen	GB.ENG.MFH.05.Gen	GB. ENG. AB. 05. Gen
6	England	1991 2003	generic	GB.ENG.SFH.06.Gen	GB. ENG. TH. 06. Gen	GB.ENG.MFH.06.Gen	GB. ENG. AB. 06. Gen
7	England	2004 2009	generic	GB.ENG.SFH.07.Gen	GB.ENG.TH.07.Gen	GB.ENG.MFH.07.Gen	GB. ENG. AB. 07. Gen
8	England	2010	generic	GB.ENG.SFH.08.Gen	GB.ENG. TH.08. Gen	GB.ENG.MFH.08.Gen	GB. ENG. AB. 08. Gen

Figure 40: Classification scheme ("Building Type Matrix") of the English residential building typology including new buildings (post 2010)

		SFH	TH	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		GB.ENG.SFH.08.Gen	GB. ENG. TH. 08. Gen	GB.ENG.MFH.08.Gen	
Number of dwellings		1	1	16	
Number of full storeys (conditioned)		2	2	3	
Number of directly attached neighbour buildings		0	1	0	
National reference area (Conditioned floor area)	m²	149	98	994	
TABULA reference area (conditioned floor area, internal dimensions)	m²	149	98	994	

Table 85: Exemplary new buildings representing the latest construction year classes (2010 ...)

Building example: variants meeting three energy performance levels for new buildings

An exemplary single-family house is given in more detail below. Comparable information for the other building types can be found in the updated national typology brochure and the underlying work report.

Energy Performance Levels

- **1. Minimum Requirements:** Combination of building fabric and heating system which meets the current building regulations Part L (2010).
- **2. Improved Standard:** Current building regulation standards, with improved fabric performance.
- **3. Ambitious Standard:** Meets the standard of the Code for Sustainable Homes Level 6 for energy which requires a net zero carbon emissions as calculated by the SAP methodology.

Label of the variant triplet				SFH post 2010			
Variant N°			001	002	003		
Energy Performance Level			Minimum Requirement	Improved Standard	Ambitious Standard / NZEB		
U-values							
Roof	W/(m²K)	0.18	0.11	0.11		
Wall	W/(m²K	.)	0.28	0.11	0.11		
Window	W/(m²K)	1.85	0.68	0.68		
Door	W/(m²K)		2.00	1.4	1.4		
Floor	W/(m²K	.)	0.22	0.11	0.11		
Thermal bridging supplement (whole envelope)	W/(m²K)	0.05	0.02	0.02		
Heat Supply System					1		
Heat generator			Condens	Condensing boiler			
Specification / Supplemental system							
Ventilation system			natural	natural	Heat recovery		
Thermal solar system			-	-	DHW		
Further system					PV		

Table 86:	Exemplary single-family house (SFH) – definition of variants
-----------	--

Figure 41: Building Display Sheet" of the exemplary SFH <GB> [from BRE, 2014]

Table 87: Exemplary SFH – Results of the energy balance calculation; Procedure: SAP Methodology (2009) [DECC/BRE, 2011].

<GB> England

Variant N°		001	002	003			
Label of the variant triplet		SFH post 2010					
Variation level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB			
Energy standard		Current building regulations. Part L1A (2010)	Zero carbon (code for sustainable homes level 6)				
Calculation method		Si	AP (2009) [DECC/BRE, 2	2011]			
National reference area (conditioned floor area)	m²	149	149	149			
Total fabric heat loss	W/K	137	66	66			
Space heating energy requirement	kWh/yr	6325	2666	244			
Water heating energy requirement	kWh/yr	2708	2761	993			
Pumps and fans energy requirement	kWh/yr	175	175	393			
Lighting energy requirement	kWh/yr	503	505	505			
PV energy generation	kWh/yr	0	0	-2404			
SAP rating (1-100)		84	88	101			
SAP band (G-A)		В	В	А			
El rating (1-100)		85	90	101			
El band (G-A)		В	В	А			
Primary Energy	kWh/ m²/yr	75	50	-5			

TABULA calculation results for all exemplary buildings

Table 88 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

OPE

Table 88:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum Requirement	1.00	64	0	64	59	10	15.9	89	0	0	0	1	0	0	0
	02	Improved Standard	0.44	47	0	47	42	10	15.9	69	0	0	0	1	0	0	0
GB.ENG.SFH.08.Gen	03	Ambitious Standard / NZEB	0.44	44	22	22	18	10	15.9	0	0	0	0	27	0	0	0
TH	01	Minimum Requirement	0.98	65	0	65	60	10	15.9	91	0	0	0	1	0	0	0
	02	Improved Standard	0.43	47	0	47	42	10	15.9	69	0	0	0	1	0	0	0
GB. ENG. TH. 08. Gen	03	Ambitious Standard / NZEB	0.43	44	22	22	18	10	15.9	0	0	0	0	26	0	0	0
MFH	01	Minimum Requirement	0.64	51	0	51	46	15	20.9	80	0	0	0	1	0	0	0
	02	Improved Standard	0.27	35	0	35	30	15	20.9	61	0	0	0	1	0	0	0
GB.ENG.MFH.08.Gen	03	Ambitious Standard / NZEB	0.27	32	20	12	8	15	20.9	0	0	0	0	28	0	0	0
Explanation of Q		ties (TABULA Data	fields)														
h_Transmission		W/(m ² K) floor area			fer coeffi	icient by	transmissi	on / indi	cator for (energy qu	ality of I	ouilding	envelo	oe (comp	actness	s + insu	lation)
q_h_nd		kWh/(m ² a) energy ne			ation h	+ + + + + + + + + + + + + + + + + + + +											
q_ve_rec_h_usable kWh/(m²a) usable co							1	blo)									
q_h_nd_net																	
q_w_nd kWh/(m²a) net energy q_q_w_out kWh/(m²a) generated						d + stora	ne losses	+ distrib	ution los	ses)							
q_del_sum_gas,c coal,bio,, _ dh,other,	oil, _el,	kWh/(m²a) sum delive		·	0,		0				ating, ot	her ene	ergy carr	iers			
q_exp_sum_el		kWh/(m²a) sum produ	uced elec	tricity (ne	egative va	alue)											

Table 89:	Sources /	References	England
-----------	-----------	------------	---------

EPISCOPE TABULA

Reference shortcut	Concrete reference (in respective language)	Short description (in English)			
[BRE, 2011]	Pout, C.: Proposed Carbon Emission factors and Primary Energy Factors for SAP 2012. BRE, 2011. http://www.bre.co.uk/filelibrary/SAP/2012/STP11- CO204_emission_factors.pdf	Proposed Carbon Emission factors and Primary Energy Factors for SAP 2012. Pout, C. BRE, 2011.			
[BRE, 2014]	BRE: EPISCOPE Building Typology Brochure, July 2014.	EPISCOPE Building Typology Brochure, July 2014.			
[DCLG, 2014]	Department for Communities and Local Govern- ment: Next steps to zero carbon homes – Allow- able Solutions. Government response and sum- mary of responses to the consultation. July 2014: https://www.gov.uk/government/consultations/next -steps-to-zero-carbon-homes-allowable-solutions	Latest update on definition of 'Allowable Solutions' 8 July 2014			
[DECC/BRE, 2011]	DECC/BRE: The Standard Assessment Procedure for the Energy Rating of Dwellings (SAP). 2009 edition, v9.90. http://www.bre.co.uk/sap2009	The Standard Assessment Procedure for the Energy Rating of Dwellings (SAP). 2009 edition, v9.90.			
[DECC/BRE, 2014]	DECC/BRE: The Standard Assessment Procedure for the Energy Rating of Dwellings (SAP). 2012 edition, v9.92. http://www.bre.co.uk/sap2012	The Standard Assessment Procedure for the Energy Rating of Dwellings (SAP). 2012 edition, v9.92			
[HM Government, 2013]	The Building Regulations 2010. Approved Docu- ment L1A. Conservation of fuel and power in new dwellings, 2013 Edition.	The Building Regulations 2010. Approved Document L1A. Conservation of fuel and power in new dwellings, 2013 Edition.			
[WBCSD, 2005]	World Business Council for Sustainable Develop- ment: The GHG protocol for project accounting. 2005.	The GHG protocol for project accounting. World Business Council for Sustainable Development, 2005.			
	www.ghgprotocol.org/standards/project-protocol				
[ZCH, 2014]	Zero carbon homes & nearly zero energy build- ings. UK Building Regulations & EU Directives. Zero Carbon Hub http://www.zerocarbonhub.org/sites/default/files/re sources/reports/ZCHomes Nearly Zero Energy Buildings.pdf	Zero carbon homes & nearly zero energy build- ings. UK Building Regulations & EU Directives. Zero Carbon Hub			

3.10 <GR> Greece

(by EPISCOPE partner NOA)

About thirty-five years ago, the concept of "bioclimatic architecture" was introduced in Greece. Over the years, there have been several buildings that have been constructed in the framework of European (e.g. Altener, Thermie) and national programmes (e.g. the Operational Programme for Energy during the mid-90s) for demonstration purposes and some as a result of the owners' initiative, which exhibit low energy performance. The majority are single family houses and some commercial exemplary buildings [KAPE 2002]. General guidelines and design principles [YPEKA Bioclimatic] are covered in a multitude of publications. The large scale application remains the Solar Village in Athens, an integration of active and passive solar systems for space and water heating in residential buildings for 1750 inhabitants, operating since the late 1980s.

The evolution of the technical regulatory framework has been very slow. The first Hellenic building thermal insulation regulation (TIR) was introduced at the end of 1979 (FEK362/4.7.1979). The maximum allowable U-value requirements for the building envelope remained in-force without any adaptation for about 30 years. They were finally revised in 2010 by the Hellenic regulation on the energy performance in the building sector (KENAK) in compliance with EPBD [Dascalaki et al. 2012]. As a result, the U-values for the building's thermal envelope became more stringent and minimum specifications were also introduced for the electromechanical (E/M) installations.

Transposition of the EPBD recast into national law has been introduced by [N.4122/2013] that covers the general regulatory framework and provisions of the Directive. However, the work for the minimum energy performance requirements and nearly zero energy buildings (NZEBs) has not been initiated nor defined.

A relevant reference for buildings with minimum energy consumption and exceptional environmental performance is introduced in the new national building code [NOK 2012]. Accordingly, these buildings should have a maximum total annual primary energy consumption of 10 kWh/m² for HVAC, domestic hot water and lighting, without any differentiation (e.g. building end-use, climate zone). Apparently, this is a rather unrealistic benchmark.

The Passive House concept is currently being promoted in the Hellenic market by the Hellenic Passive House Institute [EIPAK] that collaborates with the International Passive House Association and the Passiv Haus Institut in Greece.

3.10.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Greece

Since 2010, new buildings are constructed according to the new Hellenic regulation on the energy performance in the building sector [KENAK]. As of July 2014, the work for evaluating minimum energy performance requirements, cost optimal levels, NZEB definition etc, has not yet been initiated.

Minimum requirements for new residential buildings in Greece

Since 2010, new Hellenic buildings are constructed in accordance to the regulation on the energy performance in the building sector [KENAK] in compliance with EPBD [Dascalaki et al. 2012]. The minimum specifications for the building's thermal envelope is more stringent compared to the previous regulation (TIR). A comparative presentation of the building envelope specifications of the two regulations is given in the following table. For example, the U-value for external vertical walls in contact with outdoor air was 0.7 W/m² K with TIR and is reduced with KENAK by 14–43 % for the four national climate zones.

	climate 2010	Climate zone (Heating degree days)								
	Zone A (600–1100)	Zone B (1101–1600)	Zone C (1601–2200)	Zone D (2201–2620)						
External walls in co	ontact with ou	ıtdoor air								
TIR	0.70	0.70	0.70	0.70						
KENAK	0.60	0.50	0.45	0.40						
External horizontal	or tilted surfa	ace in contact v	vith outdoor air	r (roofs)						
TIR	0.50	0.50	0.50	0.50						
KENAK	0.50	0.45	0.40	0.35						
Floors in contact w	ith outdoor ai	r (pylotis)								
TIR										
KENAK	0.50	0.45	0.40	0.35						
Floors in contact w	ith ground or	indoor non-hea	ated spaces							
TIR	3.00	1.90	0.70	0.70						
KENAK	1.20	0.90	0.75	0.70						
Walls in contact wi	ith ground or	indoor non-hea	ted spaces							
TIR	3.00	1.90	0.70	0.70						
KENAK	1.50	1.00	0.80	0.70						
Transparent openin	igs (windows,	balcony-doors	etc)							
TIR	5.23	5.23(^a)	5.23(^a)	5.23(^a)						
KENAK	3.20	3.00	2.80	2.60						
Transparent facade	s (non operabl	le and partially	operable)							
TIR	5.23	5.23 ^a	5.23 ^a	5.23 ^a						
KENAK	2.20	2.00	1.80	1.80						

Table 90: Minimum allowable U-values (W/m2K) for different building elements at the Hellenic climate zones according to the old TIR and KENAK

TABUL

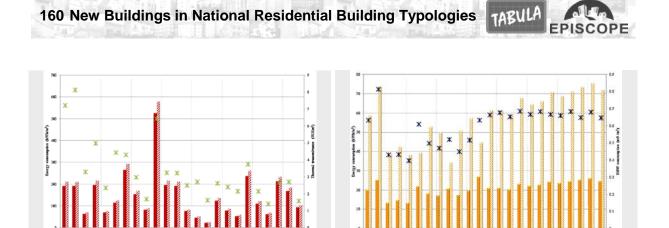
^a TIR recommended for zone B, the use of double glazing $(3.26 \text{ W/m}^2 \text{ K})$ on the facades exposed to prevailing cold winds (depending on location), while for zone C (and D) on all facades. Double glazing was mandated for all transparent elements in locations with an elevation higher than 600 m.

Minimum specifications for the building's E/M installations are also implemented (e.g. use of outdoor temperature compensation systems, zone thermostatic control, along with heat recovery for central air-handling-units and energy efficient lighting for non-residential buildings, etc). For domestic hot water (DHW) production, in accordance to the national law [N.3851/2010] on RES, all new buildings should cover 60% of the load from renewables or substantiate technical difficulties for non-compliance. This requirement has been adapted in [KENAK].

A national obligation to implement various energy conservation measures (ECMs) in all energy end-use sectors, including buildings, was introduced in 2010 [N.3855/2010] in order to achieve by 2016 an overall national indicative target of 9% energy conservation. For the building sector, this implied about 1 Mtoe energy savings compared to 2007 data.

Hellenic calculation method to comply with new building regulations for residential buildings

Hellenic Energy Performance Certificates (EPCs) have been issued as of January 2011; the vast majority of them have been issued for buildings or building units rented out or sold and only 0.3 % for new buildings. [Dascalaki et al. 2013]. The calculations are performed using the official national software [TEE-KENAK] to issue an official EPC that is returned to the inspector. The general calculation method and overall approach is in accordance to European standards, with the main calculation procedure of the building energy demand according to EN 13790/2008 using the quasi-steady state monthly method. The labelling scheme is based on asset rating accounting for heating, cooling, ventilation and DHW (lighting is accounted only for non-residential buildings), the minimum energy performance requirements, thermal envelope heat loss constraints, etc.


The ranking label (building class) is based on the calculated primary energy consumption compared to that of a "reference" building. The "reference" building is a carbon copy of the studied (real) building, with the characteristics of its envelope elements and E/M installations automatically adapted to meet the minimum energy efficiency requirements defined in the technical guidelines of KENAK The detailed characteristics of the reference building are revealed in a technical guideline by the Technical Chamber of Greece [TOTEE 20701-1/2010]. By definition, the "reference" building ranks B.

Status of NZEB definition for residential buildings in Greece

There is no national definition of nearly zero energy buildings (NZEBs). In accordance to the EPBD recast, the national law [N.4122/2013] calls for setting minimum energy performance requirements for achieving cost optimal levels and new buildings meet the minimum energy performance requirements, minimum requirements for technical building systems, and sets the target of NZEB for new buildings by the end of 2020.

As of July 2014, the relevant work has not been initiated.

An investigation of individual energy conservation measures to reduce space heating (SH) and DHW energy consumption in Hellenic residential buildings, using the TABULA typology has revealed several priorities that have high primary heating energy savings and low payback period in case of refurbishment [Droutsa et al., 2014]. A total of 18 measures on building's thermal envelope and E/M systems were investigated. Accordingly, the use of local natural gas boilers for space heating (SH) and DHW and geothermal heat pump for SH, always result in improved energy class. Due to the higher availability of solar radiation in southern Greece the use of geothermal HPs and solar collectors for 100% of DHW (primarily in climate zones A and B, can improve the energy ranking by up to three energy classes. The use of solar collectors for 60% and 100% of DHW is more effective for buildings that are thermally insulated. Reduced infiltration and room thermostatic controls are applicable for buildings with good thermal protection and system efficiencies. Although the use of oil-boilers remains the most popular heating systems, as a result of the increase tax on oil, there is a clear shift to alternative fuel sources throughout the country. The use of natural gas boilers and heat pumps has become more attractive.

(a) Space heating

(b) Domestic hot water

Calculated final and primary energy consumption (kWh/m^2) for (a) space heating and total building thermal transmittance (W/K m²), (b) domestic hot water production and DHW consumption (m^3/m^2) , for the 24 typical buildings [Droutsa et al. 2014].

Figure 42: Calculated average final and primary heating energy conservation (kWh/m²) and payback period (years) for various energy conservation measures. The error bars correspond to the maximum and the minimum values [Droutsa et al. 2014].

Three different standards for new buildings are considered within EPISCOPE: the "Current standard", the "Improved standard" and the 'NZEB standard". The improved standard is considered as a short term goal, while the NZEB standard is the 2020 goal. In the absence of official national intermediate or NZEB requirements the corresponding definitions are based on the following considerations taking into account the evolution of the currently enforced regulation [KENAK] and results published in the literature from relevant investigations:

A. Thermal envelope

The U-values become more stringent for the Improved & NZEB standards compared with the current standard [KENAK] by 0.05 & 0.15 W/m².K for opaque elements and by 20 % & 40 % for transparent elements, respectively. The U-values are different for the four climatic zones of the country. Infiltration is reduced by 15 % and 30 %, respectively for the two standards. Finally, thermal bridges that correspond to 20% of ΣUA_{opaque} for [KENAK] are reduced to 5 % for the NZEB standard.

B. E/M installations:

Three main electromechanical systems are taken into account, which constitute the most popular installations and are tailored based on regional availability of energy carriers in the country (e.g. natural gas only available in Zones B & C) and progressively with improved performance for the improved and NZEB standard. The exploitation of solar thermal systems for DHW is increased from the current standard of 60 % to 75-100 % for the improved standard (depending on climatic zone) and in addition for supporting space heating for the NZEB standard (depending on climatic zone, different coverage for SFH & MFH). Photovoltaics to cover the reduced auxiliary electrical loads are used for the NZEB. According to the calculations using [TEE-KENAK], the need is for about 1 m² for SFH and 2 m² for MFH, due south and tilt angle of 26°-31° (progressively from the south - Zone A to the north Zone D). Finally, control systems are progressively improved from class-C in the current standard, to class-B for the improved and class-A for the NZEB.

Table 91: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Greece

Calculation Method New Building Regulations – (part 1)											
Coun	try G	R	Gr	eece					Status	07/2014	
Natio	nal Requ	lirem	ent	s for New	Resid	ential E	Buildings		Special Aspects v assumed Nationa		
Legislation / Standards Hellenic regulation on the energy performance in the building sector [KENAK] Technical guidelines [TOTEE 20701-1 to 4/2010] National Law [N.3851/2010] on RES Explanation / Comments Since 2010, new Hellenic buildings are constructed in accordance to the regulation on the energy performance in the building sector [KENAK] in compliance with EPBD. All new buildings should cover 60% of the load from RES [N.3851/2010] and [KE-NAK]. Transposition of EPBD recast has been initiated by national law						No official Hellenic NZEB definition (July 2014). The adopted approach was derived by considering the evolu- tion of the currently enforced regulatic [KENAK] and published literature from relevant investigations.					
[N.4122	2/2013], but	releva		vork has not t							
	gy Servic	es		DUNA	A						
X	Heating		X	DHW Auxiliary	App Oth	ori					
X	Cooling Ventilation		X		Oth	er.					
X				Lighting							
Mechar		tion sy	/ster				Hellenic resident				
Calcu	lation Pr	oced	lure	9		Cal	culation period	I			
x	Calculation (building)	n of en	ergy	/ need for he	ating		Month				
х	Calculation	n of de	liver	red energy (s	ystem)		Month				
Calcula method The ca (percen The fac mand (d [KENAK], Ilculated end ntage) of the ctors in Tab (yearly). The	d and [TEE-K ergy de e indivio ble 92 a e asses	ove (EN) elive dual are ssm	AK] [TOTEE ared by each carrier over used for the	20701/2 energy the total calculat energy ca	010]. carrier is (yearly). on of the arrier is a	asi-steady sta only reported total primary n intermediate r in the EPC.	as a share energy de-			
Cons	ideration	of S	peo	cial Techn	ologie	S					
	al Systems				-						
x	Ventilation	system	n wi	th heat recov	ery						
x	Thermal so	olar sys	sterr	ı							
	Other spec	cial sys	tem	s:							
On-Site	e Electricity	Produc	ctior	ı	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹			
x	On-site CH	IP				x	Month	H-C-W			
x	On-site PV	'				х	Month	H-C-W			
	Other ener	gy gen	nerat	tion systems:							
	ity; self use	considere	ed for	ectricity demand or "H-C-W-HE": He	of the buildi ating - Coo	ng is directly ling - DHW -	covered by the pro Household Electric	oduced electric- city			
Photove the pro-	duced elect	rently i tricity c	inclu on-si		alculated	monthly	ovisions are ta electrical ener C.				

Table 91 (continuation)

	Calculation Method New Building Regulations – (part 2)										
Cour	ntry	GR	Greece				Status	07/2014			
Natio	onal Re	equiren	nents for New	ildings	Special Aspects with assumed National NZ						
Туре	of Re	quirem	ents (new buil								
x	U-value	es of buil	ding elements		Primary						
	Heat tr transm		efficient by	Х*	energy	total					
	Energy	need for	r heating		Carbon di	oxide emissions					
	Deliver	ed energ	У	x	Other	Thermal solar collec- tors for 60 % of DHW load					
* Prim	ary ener				ess than the	e "reference building', a					

Assessment of energy carriers in Greece

The technical guideline [TOTEE 20701-1/2010] defines the conversion factors that are used for calculating the primary energy for different energy-carriers and CO_2 emissions. These conversion factors are also being used in the official national software [TEE-KENAK] for estimating the primary energy consumption and building class rating.

In general, the values used in the TABULA database are mainly adopted from [TOTEE 20701-1/2010] and are given in Table 3.

Electricity produced from on-site photovoltaic systems is only accounted for in the event that the PV system is used to cover auxiliary electrical loads. There is no credit or other bonus in the event that the PV is connected to the main grid for export (sale) of the produced electricity.

Label / type of factor	Total Primary Energy Factor Greece				
Used for EPC rating	Х				
Used for building regulations requirements	X				
Label (national language)	Συντελεστές μετατροπής της κατανάλωσης ενέργειας σε πρωτογενή				
Description / type of weighting factor	non-renewable + renewable energy amounts; upstream energy expendi- tures (transportation, transformation) included				
Factor is multiplied by delivered energy based on the	lower (net) calorific value of each energy carrier				
Reference	[TOTEE 20701-1/2010]				
Natural gas	1.05				
Heating oil	1.1				
Electricity	2.9				
District heating	0.7				
District heating without CHP	0.5				
District heating with 100 % CHP	0.7				

Table 92: Hellenic primary energy factors

Methodological points for discussion in Greece

The on-site electricity generation is promoted through a nationally funded program on photovoltaics (PVs) since 2009 [JMD 1079] for residential buildings. The program has boosted the installation of grid-connected PVs up to 10 kWp in the mainland and up to 5 kWp in the is-

lands, on residential building roofs, by providing very attractive incentives with a remarkably high tax-free feed-in tariff (0.55 Euro/kWh for 25 years). An important provision is that in order to qualify for the PV roof program, a residential building should have a solar thermal collector or other RES for DHW. During the first three years, the program attracted over 50000 applications from individuals, very small companies, public and non-profit organizations (about 450 MWp), while about 29000 installations have already been installed in 2012, representing a cumulative capacity of 256 MWp. However, this is considered a financial transaction (investment) since the generated electricity is not directly used for covering the building electric loads and thus it is not credited in the EPC of the building.

3.10.2 Integration of National Requirements for New Buildings and NZEB Standards in the Hellenic Residential Building Typology

The first Hellenic residential building typology was developed in the framework of the TABULA project [NOA 2011]. The classification was made in accordance to the TABULA scheme using three parameters, namely: the size (single / multi family houses), the age (three age bands: prior to 1980, 1981-2000, 2001-2010) and the climate zone (four climate zones in total (A-D), in accordance to the Hellenic Building Energy Performance Regulation, KENAK). Accordingly, a total of 24 building types were defined, representative of the Hellenic residential building stock. Further details can be found in [NOA 2012]. The typologies were used to develop energy advice material in the form of electronic brochures and an on-line software tool, eKIA (www.energycon.org/ekia.html), which allows home owners for a preliminary assessment of the energy performance of their residence and its potential for improvement. The typology material is accessible in www.energycon.org and ever since it was released, in November 2012, it has been accessed by over 25000 visitors. In the framework of TABULA, the Hellenic typology was also used to set up a basic building stock model and demonstrate the applicability of the typology in scenario analysis. Further enhancement of the building stock model is foreseen in the framework of the EPISCOPE project. In the absence of "typical" buildings and the lack of reliable statistical data in Greece, the TABULA typology is expected to provide the necessary basis for the revision of the minimum requirements and the specification of cost-optimal solutions towards the NZEB goal.

Classification scheme for the Hellenic residential building stock ("Building Type Matrix")

During the IEE Project EPISCOPE the building type matrix was extended towards new buildings, reflecting the current legal requirements (KENAK2010). Accordingly, the Hellenic TABULA typology was complemented by eight new building types, two for each climate zone, to represent the current standard of constructions for the period after 2010. Figure 43 shows the respective Building Type Matrix. Eight example buildings were added in order to represent the new single family and multifamily house for the four climate zones. These buildings will be used as showcase examples of the new construction trends and the possible variations in the future towards NZEB. Two exemplary buildings, a single family and a multifamily house, are described in Table 93.

164 New Buildings in National Residential Building Typologies TABULA

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	Zone A (κλιματική ζώνη Α)	1980	generic	GR. ZoneA. SFH.01. Gen		GR.ZoneA.MFH.01.Gen	
2	Zone A (κλιματική ζώνη A)	1981 2000	generic	GR. ZoneA. SFH. 02. Gen		GR. ZoneA. MFH.02. Gen	
3	Zone A (κλιματική ζώνη Α)	2001 2010	generic	GR. ZoneA. SFH. 03. Gen		GR.ZoneA.MFH.03.Gen	
4	Zone Α (κλιματική ζώνη Α)	2011	generic	GR. ZoneA. SFH. 04. Gen		GR.ZoneA.MFH.04.Gen	
5	Zone B (κλιματική ζώνη B)	1980	generic	GR. ZoneB. SFH. 01. Gen		GR.ZoneB.MFH.01.Gen	
6	Zone B (κλιματική ζώνη B)	1981 2000	generic	GR. ZoneB. SFH. 02. Gen		GR. Zone B. MFH. 02. Gen	
7	Zone B (κλιματική ζώνη B)	2001 2010	generic	GR. ZoneB. SFH.03. Gen		GR. ZoneB. MFH. 03. Gen	
8	Zone B (κλιματική ζώνη B)	2011	generic	GR. ZoneB. SFH. 04. Gen		GR.ZoneB.MFH.04.Gen	
9	Zone C (κλιματική ζώνη Γ)	1980	generic	GR. ZoneC. SFH.01. Gen		GR.ZoneC.MFH.01.Gen	

Figure 43: Classification scheme ("Building Type Matrix") of the Hellenic residential building typology, now extended towards new buildings

10	Zone C (κλιματική ζώνη Γ)	1981 2000	generic	GR.ZoneC.SFH.02.Gen	GR.ZoneC.MFH.02.Gen
11	Zone C (κλιματική ζώνη Γ)	2001 2010	generic	GR. ZoneC. SFH. 03. Gen	GR.ZoneC.MFH.03.Gen
12	Zone C (κλιματική ζώνη Γ)	2011	generic	GR.ZoneC.SFH.04.Gen	GR.ZoneC.MFH.04.Gen
13	Zone D (κλιματική ζώνη Δ)	1980	generic	GR. ZoneD. SFH. 01. Gen	GR.ZoneD.MFH.01.Gen
14	Zone D (κλιματική ζώνη Δ)	1981 2000	generic	GR. ZoneD. SFH. 02. Gen	GR.ZoneD.MFH.02.Gen
15	Zone D (κλιματική ζώνη Δ)	2001 2010	generic	GR. ZoneD. SFH. 03. Gen	GR.ZoneD.MFH.03.Gen
16	Zone D (κλιματική ζώνη Δ)	2011	generic	GR. ZoneD. SFH. 04. Gen	GR.ZoneD.MFH.04.Gen

Continuation Figure 43: Classification scheme ("Building Type Matrix") of the Hellenic residential building typology, now extended towards new buildings

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		GR.ZoneB.SFH.04.Gen		GR.ZONEB.MFH.04.Gen	
Number of dwellings		1		10	
Number of full storeys (conditioned)		1		5	
Number of directly attached neighbour buildings		0		0	
National reference area*	m²	300		950	
TABULA reference area (conditioned floor area, internal dimensions)	m²	255		808	

Table 93: Exemplary new buildings representing the latest construction year classes (2011 ...)

*) external dimensions in accordance to Technical Guideline of the Technical Chamber of Greece, TOTEE 20701-1/2010 "Analytic National Specifications of Parameters for the Calculation of the Energy Performance of Buildings and the Energy Performance Certificate"

Building example: variants meeting three energy performance levels for new buildings

Three variations of each new building type are considered by combining the envelope with three different types of heat supply systems, which are at present the most popular in the Hellenic market, namely, oil, natural gas and electricity.

The thermal characteristics of the envelope and the system performances are different for each of the four climate zones, as foreseen by KENAK.

In correspondence to the TABULA definition of refurbishment scenarios (base casestandard-ambitious), three energy performance levels (standards) are considered for new buildings within EPISCOPE: the "Current standard", the "Improved standard" and the 'NZEB standard". The improved standard is considered as a short term goal, while the NZEB standard is the 2020 goal.

Accordingly, new building types are presented in three versions, each consisting of a triplet of performance standards (variants), specifically:

- "Oil" (Variants 01, 02, 03):
- "Natural Gas" (Variants 11, 12, 13):
- "Electricity" (Variants 21, 22, 23):
- Variants 01, 11 and 21 correspond to envelope and system requirements in accordance to the current standard defined in the national regulation (KENAK) for the respective energy carrier ("Current standard").
- Variants 02, 12 and 22 correspond to an improved envelope (more stringent U-values) and system using the specific energy carrier with an improved performance and increased exploitation of solar thermal systems for DHW ("Improved Standard")
- Variants 03, 13 and 23 correspond to the most ambitious scenario with further improved envelope and system performance using the same energy carrier maximizing the exploitation of RES by using solar systems to cover 100 % of the DHW energy demand and a significant amount of space heating demand, as well as PV systems to cover auxiliary energy demand ("NZEB standard").

The requirements of each standard are given in more detail in the following table.

		Current Std [KENAK]	Improved Std	NZEB Std
		Envelope		
	Wall	0.60/0.50/0.45/0.40	0.55/0.45/0.40/0.35	0.45/0.35/0.30/0.25
	Roof-pylotis	0.50/0.45/0.40/0.35	0.45/0.40/0.35/0.30	0.35/0.30/0.25/0.20
U-values (*) (W/m².K)	Floor	1.20/0.90/0.75/0.70	1.15/0.85/0.70/0.65	1.05/0.75/0.60/0.55
	Walls next to ground/ non-heated spaces	1.50/1.00/0.80/0.70	1.45/0.95/0.75/0.65	1.35/0.85/0.65/0.55
	Windows	3.20/3.00/2.80/2.60	2.56/2.40/2.24/2.08	1.93/1.82/1.72/1.57
Infiltration (m ³ /h)/r	m ² window area	5.50	4.68	3.85
Thermal bridges		20 % of ΣUA _{opaque}		5 % of [KENAK]
		E/M Installation	IS	
Natural-gas fired boiler perform- ance	Thermal	0.92	0.97	1.08 (low temp floor heat- ing, Zones B&C)
Oil fired boiler performance	Thermal	0.90	0.95	0.95 (Zone A), 1.05 (low temp floor heating, Zones B-D)
Central H.P. performance; high temp or geothermal(*)	COP (climate zone)	3.2	3.8(A), 3.6(B), 3.5(C), 3.4(D)	3.8(A), 5.6(B), 5.2(C), 4.7(D)
	Solar for DHW	60 %	75 %	100 %
	Solar for space heat- ing (*) for SFH-MFH (climate zone)			80-75 % (A), 60-55 % (B) 45-35 % (C), 30-20 % (D)
	PV for auxiliary			100 %
Controls	Class	С	В	Α

Table 94: New building requirements per climate zone for three energy performance standards (current, improved and NZEB)

(*) reported by climate zone (A/B/C/D)

Table 95 summarises the variants defined for an exemplary new single family house in climate zone B. The "improved std" for fuel systems, includes a condensing boiler (C-boiler) with better controls than the "non-condensing boiler (NC-boiler) currently considered by KE-NAK and total coverage of the DHW needs. The "NZEB std" introduces a low-temperature condensing boiler with advanced controls combined with a subfloor system; the solar heating system covers total DHW needs and 60 % of the space heating needs. The auxiliary energy is also covered by PV. The "electricity" variation of the building is served by an electrical heat pump, which, in the case of the "NZEB Std" is low-temperature (LT) combined with a subfloor system.

Table 95:	Exemplary single-family house (SFH), c	climate zone B – definition of variants
-----------	--	---

GR.ZoneB.SFF	1.04.Gen		"Oil"			"Natural Ga	s"	"Electricity"		у"
Variant N°		001	002	003	011	012	013***	021	022	023
Energy Perform Level	nance	Current Std	Improved Std	NZEB Std	Current Std	Improved Std	NZEB Std	Current Std	Improved Std	NZEB Std
U-values										
Roof	W/(m ² K)	0.45	0.40	0.30	0.45	0.40	0.30	0.45	0.40	0.30
Wall	W/(m ² K)	0.50	0.45	0.35	0.50	0.45	0.35	0.50	0.45	0.35
Window	W/(m ² K)	3.00	2.40	1.82	3.00	2.40	1.82	3.00	2.40	1.82
Floor	W/(m²K)	0.90	0.85	0.75	0.90	0.85	0.75	0.90	0.85	0.75
Thermal bridg- ing supplement (whole enve- lope)	W/(m²K)	0.05	0.05	0.02	0.05	0.05	0.02	0.05	0.05	0.02
Heat Supply Sy	stem									
Heat generator		NC-boile Basic contro	Improved	C-boiler (LT) & subfloor Advanced controls	NC-boile Basic contro	Improved	C-boiler (LT) & subfloor Advanced controls	Electrical Heat Pump HT HT LT/GHP & subfloor		LT/GHP &
Specification / Supplemental system								ext.air	ext.air	ext air / ground
Ventilation sys	tem									
Thermal solar		DHW 60%	DHW 100%	DHW& SH 100%/60%	DHW 60%	DHW 100%	DHW & SH 100%/60%	DHW 60%	DHW 100%	DHW & SH 100%/60%
Further system				PV			PV			PV

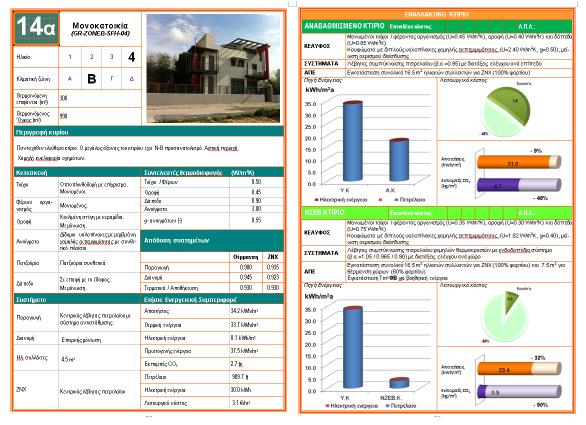


Figure 44: "Building Display Sheet" of the exemplary SFH <GR> [NOA 2014]

Variant N°		001	002	003	001	002	003	011	012	013
Label of the variant triplet		Fuel Oil			Natural Gas			Electricity		
Variation level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB
Energy standard		KENAK			KENAK			KENAK		
Calculation method						EN 13790				
National reference area*	m²	300	300	300	300	300	300	300	300	300
Energy need for heating	kWh/(m²a)	34.2	31.0	23.4	34.2	31.0	23.4	34.2	31.0	23.4
Delivered energy										
Fossil fuels	kWh/(m²a)	33.7	17.4	3.3	33.1	17.1	3.2	8.7	0	0
Renewable fuels	kWh/(m²a)	8.7	16.0	22.7	8.7	16.0	22.7	8.7	16.0	22.7
Electricity	kWh/(m²a)	0.1	0.1	0	0.1	0.1	0	7.2	4.7	0.5
Primary energy demand	kWh/(m²a)	37.5	19.5	4.0	35.2	18.3	3.8	30.3	13.7	1.5
Relation to requirement	(² *)	85 %	44 %	9 %	80 %	41 %	9 %	83 %	38 %	4 %

Table 96: Exemplary SFH – Results of the energy balance calculation; Procedure: TEE-KENAK

(*) external dimensions in accordance to Technical Guideline of the Technical Chamber of Greece, TOTEE 20701-1/2010 "Analytic National Specifications of Parameters for the Calculation of the Energy Performance of Buildings and the Energy Performance Certificate"

 $(^{2\star})$ Percentages refer to comparison of primary energy between the variant and the corresponding reference building in accordance to KENAK

TABULA calculation results for all exemplary buildings

Table 97 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for two exemplary buildings.

PE

Table 97:	Exemplary new buildings – Results of the TABULA calculation procedure (climate zone B;
	standard boundary conditions)

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
	01	Minimum Requirement	1.75	35	0	35	32	10	15	0	45	0	0	6	0	0	0
SFH	02	Improved Standard	1.39	28	0	28	30	10	16	0	28	0	0	6	0	0	0
	03	Ambitious Standard / NZEB	1.05	21	0	21	22	10	16	0	7	0	0	6	0	0	0
	11	Minimum Requirement	1.75	35	0	35	32	10	15	45	0	0	0	6	0	0	0
	12	Improved Standard	1.39	28	0	28	29	10	16	26	0	0	0	2	0	0	0
GR.ZoneB.SFH.04.Gen	13	Ambitious Standard / NZEB	1.05	21	0	21	21	10	16	6	0	0	0	6	0	0	0
	21	Minimum Requirement	1.75	35	0	35	33	10	15	0	7	0	0	16	0	0	0
	22	Improved Standard	1.39	28	0	28	29	10	16	0	0	0	0	12	0	0	0
	23	Ambitious Standard / NZEB	1.05	21	0	21	21	10	16	0	0	0	0	7	0	0	0
	01	Minimum Requirement	0.93	22	0	22	19	15	20	0	32	0	0	6	0	0	0
	02	Improved Standard	0.76	19	0	19	20	15	21	0	19	0	0	6	0	0	0
MFH	03	Ambitious Standard / NZEB	0.58	14	0	14	15	15	21	0	5	0	0	6	0	0	0
	11	Minimum Requirement	0.93	22	0	22	19	15	20	32	0	0	0	6	0	0	0
ER	12	Improved Standard	0.76	19	0	19	19	15	21	17	0	0	0	2	0	0	0
GR.ZoneB.MFH.04.Gen	13	Ambitious Standard / NZEB	0.58	14	0	14	14	15	21	4	0	0	0	6	0	0	0
	21	Minimum Requirement	0.93	22	0	22	20	15	20	0	9	0	0	12	0	0	0
	22	Improved Standard	0.76	19	0	19	19	15	21	0	0	0	0	10	0	0	0
	23	Ambitious Standard / NZEB	0.58	14	0	14	14	15	21	0	0	0	0	6	0	0	0
q_h_nd kWh/(m²a) energy nergy nergy nergy nergy q_h_nd_net kWh/(m²a) usable cor q_h_out kWh/(m²a) net energy q_g_h_out kWh/(m²a) generated q_w_nd kWh/(m²a) net energy q_g_w_out kWh/(m²a) generated q_g_w_out kWh/(m²a) generated			atafields) rea related heat transfer coefficient by transmission / indicator for energy quality of building envelope (compactness + insulation) reed for heating contribution of ventilation heat recovery ergy need for heating (q_h_nd - q_ve_rec_h_usable) ited heat heating system (net energy need + storage losses + distribution losses) ergy need domestic hot water ited heat dhw (net energy need + storage losses + distribution losses) elivered energy, energy carrier gas, oil, coal, biomass, electricity, district heating, other energy carriers														

3.10.3 Sources / References Greece

Table 98: Sources / References Greece

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[Dascalaki et al. 2011]	E.G. Dascalaki, K.G. Droutsa, C.A. Balaras, S. Kontoyiannidis, Building Typologies as a Tool for Assessing the Energy Performance of Residential Buildings – A Case Study for the Hellenic Building Stock, Energy & Buildings, Vol. 43, No 12, p. 3400-3409, (2011).	Overview of the TABULA Hellenic residential building typology along with an assessment of various energy conservation measures for esti- mateing the energy performance of the building stock in Greece in an effort to meet the 9% indica- tive national energy savings target by 2016.
[Dascalaki et al. 2012]	E.G. Dascalaki, C.A. Balaras, A.G. Gaglia, K.G. Droutsa, S. Kontoyiannidis, Energy Performance of Buildings - EPBD in Greece, Energy Policy, Vol. 45, p. 469–477, (2012).	Overview of EPBD implementation in Greece
[Dascalaki et al. 2013]	E.G. Dascalaki, S. Kontoyiannidis, C.A. Balaras, K.G. Droutsa, Energy Certification of Hellenic Buildings: First findings, Energy & Buildings, Vol. 65, p. 429-437, (2013).	First data analysis of over 350,000 EPCs for gain- ing an insight of the energy performance of build- ings in Greece, towards better understanding the Hellenic building stock. Includes data for residen- tial and non-residential buildings.
[Droutsa et al. 2014]	K.G. Droutsa, S. Kontoyiannidis, E.G. Dascalaki, C.A. Balaras, Ranking cost effective energy con- servation measures for heating in Hellenic residen- tial buildings, Energy & Buildings, Vol. 65, p. 318- 332, (2014).	Assessing the potential benefits and setting the priorities of individual energy conservation measures to reduce heating energy consumption in Hellenic residential buildings, including space heating and domestic hot water production. The analysis exploits the Hellenic TABULA typology. The focus is mainly on the implementation of measures that have low first-cost investment and short payback period. In order to prioritize ECMs that would be most attractive to building owners, two ranking criteria are used, namely primary heating energy savings and payback period. The preliminary results are used to provide an insight on the potential abatement of CO ₂ emissions for the national residential building stock.
[JMD 1079]	Ειδικό Πρόγραμμα Ανάπτυξης Φωτοβολταϊκών Συστημάτων σε κτιριακές εγκαταστάσεις και ιδίως σε δώματα και στέγες κτιρίων (KYA 1079/ B/04.06.2009) http://www.ypeka.gr/LinkClick.aspx?fileticket=mz8 ssdmgKhg%3d&tabid=541	Joint Ministerial Decision on the special program for the development of photovoltaics in buildings and in particular on building roofs upto 10 kWp, introduced in 2009
[KAPE 2002]	Βιοκλιματικός Σχεδιασμός στην Ελλάδα: Ενεργειακή Απόδοση και Κατευθύνσεις Εφαρμογής, Λάζαρη, Ε. και Τζανακάκη, Ε. (επιμ.), Κέντρο Ανανεώσιμων Πηγών Ενέργειας (ΚΑΠΕ), Πικέρμι, 2022 <u>http://www.cres.gr/kape/education/bioclimatic_broc</u> <u>hure.pdf</u>	Design principles for bioclimatic buildings in Greece, by the Center for Renewable Energy Sources
[KENAK 2010]	Κανονισμός Ενεργειακής Απόδοσης Κτηρίων <u>http://www.buildingcert.gr/nomiko_plaisio/kenak.pd</u> <u>f</u>	Hellenic regulation on the energy performance in the building sector
[N.3661/2008]	Μέτρα για τη μείωση της ενεργειακής κατανάλωσης των κτιρίων και άλλες διατάξεις http://www.buildingcert.gr/nomiko_plaisio/3661_20 08.pdf	National law for the transposition of the European Directive 2002/91/EC on energy end-use efficiency and energy services
[N.3851/2010]	Επιτάχυνση της ανάπτυξης των Ανανεώσιμων Πηγών Ενέργειας για την αντιμετώπιση της κλιματικής αλλαγής και άλλες διατάξεις σε θέματα αρμοδιότητας του Υπουργείου Περιβάλλοντος, Ενέργειας και Κλιματικής Αλλαγής http://www.ypeka.gr/LinkClick.aspx?fileticket=pnhp pGnURds%3d&tabid=285	National law for the transposition of the European Directive 2009/28/EC on the promotion of the use of energy from renewable sources
[N.3855/2010]	Μέτρα για τη βελτίωση της ενεργειακής απόδοσης κατά την τελική χρήση, ενεργειακές υπηρεσίες και άλλες διατάξεις <u>http://www.ypeka.gr/LinkClick.aspx?fileticket=Axg</u> <u>QsUVAUjA%3D&</u>	National law for the transposition of the European Directive 2006/32/EC on energy end-use efficiency and energy services

172 New Buildings in National Residential Building Typologies TABULA

EPISCOPE

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[N.4122/2013]	Ενεργειακή Απόδοση Κτιρίων – Εναρμόνιση με την Οδηγία 2010/31/ΕΕ του Ευρωπαϊκού Κοινοβουλίου και του Συμβουλίου και λοιπές διατάξεις https://www.buildingcert.gr/N4122_2013.pdf	National law for the transposition of the European Directive 2010/31/EC - EPBD recast
[NOA 2011]	NOA (ed.), Hellenic building Typology Brochure, TABULA project, WP3, D5.2, May 2011	National Hellenic typology brochure, developed during the IEE Project TABULA
[NOA 2012]	NOA (ed), National Scientific Report-Greece, TABULA project, D6.2, May 2012 http://episcope.eu/fileadmin/tabula/public/docs/scientific/GR_TABULA_ScientificReport_NOA.pdf	Hellenic scientific report in the framework of TABULA project
[NOA 2014]	Τυπολογία Ελληνικών Κτιρίων Κατοικίας – Δυναμικό Εξοικονόμησης Ενέργειας	New national Hellenic typology brochure
[NOK 2012]	Νέος Οικοδομικός Κανονισμός (Ν.4067/2012)	National building code
[TOTEE 20701- 1/2010]	Αναλυτικές Εθνικές Προδιαγραφές Παραμέτρων για τον Υπολογισμό της Ενεργειακής Απόδοσης Κτηρίων και την Έκδοση του Πιστοποιητικού Ενεργειακής Απόδοσης, Τεχνική Οδηγία Τεχνικού Επιμελητηρίου Ελλάδας, Τ.Ο.Τ.Ε.Ε. 20701- 1/2010, Α' έκδοση Ιούλιος 2010, Β' έκδοση Μάρτιος 2012, Αθήνα. (http://portal.tee.gr/portal/page/portal/SCIENTIFIC _WORK/GR_ENERGEIAS/kenak)	Part of the series of the main four Hellenic techni- cal guidelines (TOTEE 20701). In a total of over 480 pages, the four TOTEE reveal all the details for the implementation of KENAK. TOTEE 20701- 1/2010 "Analytic National Specifications of Pa- rameters for the Calculation of the Energy Per- formance of Buildings and the Energy Perform- ance Certificate" was first published in July 2010 and revised in March 2012. The guideline outlines the quasi-steady state monthly calculation proce- dures and defines the calculation parameters for the energy design study and for facilitating the building energy audits. It also defines in detail the reference building for different end-use buildings, if necessary. The main objective is to minimize erroneous calculations as a result of a poor as- sessment of the design engineer or the inspector. The guidelines are available on-line by TEE.
[TOTEE 20701- 2/2010]	Θεμροφυσικές Ιδιότητες Δομικών Υλικών και Έλεγχος της Θερμομονωτικής Επάρκειας των Κτηρίων, Τεχνική Οδηγία Τεχνικού Επιμελητηρίου Ελλάδας, Τ.Ο.Τ.Ε.Ε. 20701-2/2010, Α' έκδοση Ιούλιος 2010, Αθήνα. <u>http://portal.tee.gr/portal/page/portal/SCIENTIFIC</u> <u>WORK/GR_ENERGEIAS/kenak</u>	Part of the series of the main four Hellenic techni- cal guidelines (TOTEE 20701). In a total of over 480 pages, the four TOTEE reveal all the details for the implementation of KENAK. TOTEE 20701- 2/2010 "Thermophysical Properties of Building Materials and the Adequacy Control of Thermal Insulation of Buildings" was first published in July 2010. It sets the minimum thermal insulation re- quirements and defines the calculation procedures for verifying compliance and adequacy of a build- ing's thermal envelope. The guidelines are avail- able on-line by TEE.
[TOTEE 20701- 3/2010]	Κλιματικά Δεδομένα Ελληνικών Περιοχών, Τεχνική Οδηγία Τεχνικού Επιμελητηρίου Ελλάδας, Τ.Ο.Τ.Ε.Ε. 20701-3/2010, Α' έκδοση Ιούλιος 2010, Β' έκδοση Μάρτιος 2012, Αθήνα.	Part of the series of the main four Hellenic techni- cal guidelines (TOTEE 20701). In a total of over 480 pages, the four TOTEE reveal all the details for the implementation of KENAK. TOTEE 20701- 3/2010 "Hellenic Climatic Data" was first published in July 2010 and revised in March 2012. The guideline defines the climatic data necessary for the calculations, at the four national climatezones and 62 Hellenic cities. The guidelines are available on-line by TEE.

<GR> Greece

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[TOTEE 20701- 4/2010]	Οδηγίες και Έντυπα Ενεργειακών Επιθεωρήσεων Κτιρίων, Λεβήτων και Εγκαταστάσεων Θέρμανσης και Εγκαταστάσεων Κλιματισμού, Τεχνική Οδηγία Τεχνικού Επιμελητηρίου Ελλάδας, Τ.Ο.Τ.Ε.Ε. 20701-1/2010, Α' έκδοση Ιούλιος 2010, Β' έκδοση Μάρτιος 2012, Αθήνα. (http://portal.tee.gr/portal/page/portal/SCIENTIFIC _WORK/GR_ENERGEIAS/kenak)	Part of the series of the main four Hellenic techni- cal guidelines (TOTEE 20701). In a total of over 480 pages, the four TOTEE reveal all the details for the implementation of KENAK. TOTEE 20701- 4/2010 "Guidelines and Forms for Building Energy Audits, Inspection of Boilers & Heating Installa- tions, and Inspection of Air-Conditioning Installa- tions" was first published in July 2010 and revised in March 2012. The guideline defines the detailed contents, procedures and standardizeō forms for performing building energy audits, preparing the EPC and performing boiler and heating system inspections and air-conditioning system inspec- tions and for electronic submission to the official registry. The guidelines are available on-line by TEE.
[TOTEE 20701- 5/2010]	Συμπαραγωγή Ηλεκτρισμού, Θερμότητας & Ψύξης: Εγκαταστάσεις σε Κτήρια, Τεχνική Οδηγία Τεχνικού Επιμελητηρίου Ελλάδας, Τ.Ο.Τ.Ε.Ε. 20701-1/2010, Α' έκδοση Απρίλιος 2012, Αθήνα. <u>http://portal.tee.gr/portal/page/portal/SCIENTIFIC</u> <u>WORK/GR_ENERGEIAS/kenak</u>	The fifth addition to the series of the Hellenic technical guidelines (TOTEE 20701) that support KENAK. TOTEE 20701-5/2010 "Combined Electricity, Heat and cold Production: Installations in Buildings" was first published in April 2012. The guideline outlines the technical specifications for the installation and connection of different CHP systems with the main grid and the systems. The guidelines are available on-line by TEE.
[TEE-KENAK]	Λογισμικό TEE-KENAK http://portal.tee.gr/portal/page/portal/SCIENTIFIC WORK/GR_ENERGEIAS/kenak	The official national software (TEE–KENAK) was developed by the National Observatory of Athens (NOA) for the Technical Chamber of Greece (TEE), to support the implementation of KENAK in Greece and issue EPCs. For the building's energy performance assessment, this is the common calculation tool that is used by commercial soft- ware, to avoid inconsistency problems that could have arised from using different software that may provide different results. The calculation engine of TEE–KENAK was based on the EPA-NR tool, which was developed within the framework of a European project (www.epa-nr.org). The tool was upgraded to meet national requirements and the final European standards, with a new interface, incorporating the relevant national technical librar- ies, weather data, user's guide etc. The tool is periodically updated and is available on-line by TEE since November 2010.
[YPEKA Biocli- matic]	Προώθηση της Βιοκλιματικής Αρχιτεκτονικής στο κτίριο και ιδιαίτερα στην κατοικία <u>http://www.ypeka.gr/Default.aspx?tabid=380⟨</u> uage=el-GR	For the advancement of bioclimatic architecture of buildings with an emphasis on dwellings. Overview of design principles for Regional Planning & Urban Development of the Hellenic Ministry of Environ- ment, Energy & Climatic Change (YPEKA)

3.11 <HU> Hungary

(by EPISCOPE partner BME)

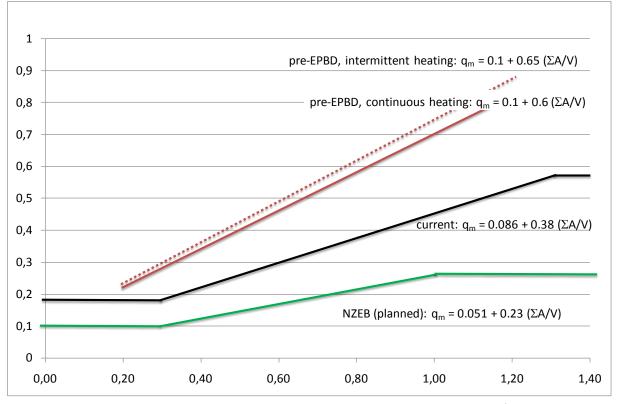
The attention towards low-energy buildings was initiated by the Solanova project completed in 2006, when a residential building built with prefabricated sandwich panels (a so-called "commi-block" building) has been retrofitted to a low-energy building. It was realized within an EU FP5 project, as a cooperation of the Uni-Kassel, the Passive House Institute Darm-stadt and the Budapest University of Technology (among others).

Although since 2008 the building construction industry is in crisis, the interest for energy efficient buildings is relatively high. Since then some hundreds of family houses and a couple of multi-residential buildings have been built according to low-energy level. The number of certified passive houses is rather low, because there are no subsidies available for certified buildings, and the cost of the certification is relative high. Statistics are not available about the number of low-energy or passive houses.

3.11.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Hungary

Also 2006 was the date for the introduction of the new building energy requirements in accordance with the EPBD. Since then the requirements have remained unchanged. The requirements are far from what could be called NZEB. However in 2015, 2018 and 2021 significant changes will be introduced in order to strengthen the requirements. The latter date refers to the introduction of NZEB requirements for residential buildings.

Officially there is already a definition for the nearly zero-energy buildings (NZEBs), but it is not an accurately elaborated definition, just a one-paragraph long legal text. Therefore the elaboration of a detailed specification will be necessary in the future.


Minimum requirements for new residential buildings in Hungary

The first Ministerial Order (the 7/2006. (V. 24) Decree of Minister without Portfolio about Determination of Energy Efficiency of Buildings), which included the requirements, the design input data and the calculation method, was issued in May 2006 and has been in force since the 1st of September 2006.

Since that date, the fulfilment of energy requirements is a precondition for obtaining a building permit. Several calculation softwares were developed on a commercial basis. As a result, the thermal performance of buildings improved considerably. In terms of building envelopes, it corresponds to 36 %, 50 % and 43 % decreases of the U values of exposed walls, roofs and windows, respectively, relative to pre-EPBD values. The overall average U value of an envelope (including thermal bridge effects) ranges between 0.45 and 0.65 W/m2 K, depending on the surface to volume ratio (see next figure).

The requirement system has three facets, as far as new buildings and major renovations are concerned. Maximum permitted values are set for the U values of elements and the specific heating energy need (W/m3K), as a function of the surface to volume ratio. It is to be emphasized that, applying elements with the allowed U values does not guarantee the fulfilment of the specific heating energy need requirement: depending on the ratio of wall, window and roof area, stricter insulation requirements must often be applied. The losses from thermal bridges are also considered. Finally, the specific yearly primary energy need must not exceed a limit, which depends on the surface to volume ratio and the type of use of the building. Maximum permitted values are given for a few typical uses (residential, school, office), whilst, in case of mixed use, a reference building is to be considered. The primary energy needs include heating, domestic hot water, cooling and, for non-residential buildings, lighting needs.

176 New Buildings in National Residential Building Typologies

TABULA

Figure 45: Development of the requirements on the specific heating energy need (W/m³K), as a function of the surface to volume ratio [m²/m³]

These requirements were applicable for new buildings and major renovations above 1000 m² conditioned floor area.

But, since then, the Hungarian Decree of the Minister of Interior 40/2012 (VIII. 13.) and the amendment of the 7/2006. (V. 24) have introduced changes in the requirements:

- For new buildings and major renovations, the new requirements have been in force since the 9th of January 2013 for the building service system. These requirements are partly recommendations (application of condensing boilers; roomwise control system for heating; in case of a balanced ventilation system, a heat recovery efficiency above 70 %; ventilators set to the operation mode with maximum efficiency), and partly obligatory (balancing the heating, cooling, ventilation and DHW system; central control system in buildings above 100 m² conditioned floor area; circulation pumps must be operated according to a time schedule; hydraulic losses are limited for ventilation system elements; air tightness of ventilation ducts is to be maximised).
- If any building element or building service system element of a building is to be **retrofitted energetically** the element must fulfil the current requirements (regarding U-values or building service system elements). This rule does not apply in case of maintenance measures. This requirement has been in force since 9th of July 2013.
- In case of a **new building** it is obligatory to analyse the application possibilities of alternative systems considering environmental, technical and economic aspects. The analysis can be carried out for individual buildings or for a group of similar buildings or for buildings at the same location and with similar characteristics or in case of a group of buildings with common heating or cooling system. This requirement has been in force since the 9th of July 2013.

Hungarian calculation method to comply with new building regulations for residential buildings

The governmental order defining the method for the certification of buildings was issued in 2008. It included both the operational and the asset method and it was the subject of conciliation in the Chamber of Engineers. However, an official methodology was only developed for the asset method. Thus, in the practice, all the experts use the asset method. The same order postponed the deadlines for the initiation of the certification process: for new buildings, it started in January 2009, whilst compulsory certification of existing buildings was launched in January 2012, although it is already in effect since 2008 on a voluntary basis and in the case of subsidized energy conscious retrofit.

The calculation method is defined by the Ministerial Order (the 7/2006. (V. 24) Decree of Minister without Portfolio about Determination of Energy Efficiency of Buildings), which included the requirements, the design input data and the calculation method. It was originally issued in May 2006 and has been modified two times since then (in 2012 and in 2014) [BM, 2012], [BM, 2014].

Status of NZEB definition for residential buildings in Hungary

Officially, there is already a legislative definition for the nearly zero-energy buildings (NZEBs), but it is not an accurately elaborated definition, just a one-paragraph long legal text. Therefore the elaboration of a detailed specification will be necessary in the future. According to the regulation, a NZEB building is different from a building meeting cost optimum requirements in that 25 % of its primary energy demand needs to be met from renewable sources. The cost optimal requirements will be introduced in 2015 for buildings applying for any national or EU funds and in 2018 for all buildings.

A preliminary study to set the definition and the requirements of the NZEBs was carried out by the University of Debrecen in May 2012. A revised version, taking into account the results of the cost optimal requirements at the lowest global cost, was developed in January 2013. It has provided additional recommendations on the requirements for existing buildings. The official legislative definition was based on this study, but contains no technical details. Therefore the figures presented in this paper are based on the study. The recommended requirements are summarized in the following tables and the previous figure.

Table 99:	Maximum permitted values for the U values of elements in the current and in the foreseen
	NZEB legislation

	Current requirement	Foreseen NZEB		maximum specific yearly primary energy need [kWh/m ² .year]
	requirement	requirements	RESIDENTIAL BUILDINGS	
Building element	UW/m ² .K	UW/m ² .K	1 storey	72
Exposed wall	0.45	0.20	2 storeys	60
Flat roof			3-4 storeys	53
	0.25	0.15	5 or more storeys	50
Attic floor slab	0.30	0.15	OFFICE BUILDINGS	
Floor slab over basement	0.50	0.25	comfort category A, B: 1 storey	102
Window, non-metal frame	1.60	1.00	comfort category A, B: multi-storey	85
/			comfort category C	115
Window, metal frame	2.00	1.30	EDUCATIONAL BUILDINGS	
Entrance door	3.00	1.30	educational buildings	60

Table 100: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in Hungary

			С	alculation	Metho	d New	Building R	Regulation	s – (part 1)			
Cour	ntry	HU	Hu	ungary					Status	07/2014		
National Requirements for New Residential Buildings								Special Aspects with r (assumed) National NZ				
Legislation / Standards							Officially there is already					
 [TNM, 2006] Ministerial Order (the 7/2006. (V. 24) Decree of Minister without Portfolio about Determination of Energy Efficiency of Buildings. Modified two times (in 2012 and in 2014). [BM, 2014] Ministerial decree 20/2014 (III.7.) of Minister of Interior Explanation / Comments Official definition of NZEB since 7 March 2014 [BM, 2014] 							the nearly zero-energy (NZEBs), but it is not elaborated definition, paragraph long legal building is different fri meeting the 'cost op ments' in that 25% of its demand needs to be me able sources. The elaboration of a de tion will be necessary in	an accurately just a one- text: an nZEB om a building timum require- primary energy tet from renew- tailed specifica-				
Ener	gy Serv	ices							The NZEB calculation			
×	Heating		x	DHW	App	iances			based on the Hungaria dure for new buildings.	an EPC proce-		
x	Cooling		x	Auxiliary	Othe				Appliances and lighting			
x	Ventilatio	on		Lighting					ered in the regular EP re	equirements.		
Expla	nation / Co	ommer	nts									
Calc	ulation F	Proce	dur	e		Calo	culation period	ł	The NZEB calculation			
x	Calculati (building		nerg	y need for hea	iting		Year		based on the Hungarian EPC proce- dure for new buildings. No deviation compared to the calculation method for			
х	Calculati	ion of d	lelive	red energy (sy	/stem)		Year		standard buildings.			
Expla	nation / Co	ommer	nts									
Cons	sideratio	on of S	Spe	cial Techn	ologie	5			The NZEB calculation is methodicall based on the Hungarian EPC proce			
Therm	al System	S							dure for new buildings. No deviation compared to the calculation method for standard buildings.			
x		-		ith heat recove	ery							
x	Thermal								Calculation methods for			
X	Other sp	ecial sy	/stem	IS:			ems can be in ed calculation		nologies are not defined. Any software on the market can be used.			
On-Sit	e Electricit	y Prod	uctior	า	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹	Off-site systems are ex primary energy factors.	pressed by the		
x	On-site C	CHP			х							
x	On-site F	٧			x	x	year	H-C-W				
	Other en	ergy ge	enera	tion systems:								
	¹ "self use" ity; self us	= parts o e conside	f the el ered fo	lectricity demand o r "H-C-W-HE": Hea	f the buildir ating - Cooli	ig is directly ng - DHW -	covered by the pro	oduced electric- city				
Expla	nation / Co	ommer	nts									
Туре	of Requ	uirem	ents	s (new buil	dings)				The NZEB calculation is	· · · · · · · · · · · · · · · · · · ·		
x	U-values	of buil	ding	elements		Drimon			based on the Hungarian dure for new buildings.			
x	Heat transfer coefficient by x Primary energy non-renewable							vable	compared to the calcula standard buildings.			
	Energy need for heating Carbon dioxide emissions											
	Delivered	d energ	IУ			Other						
The he on the For bu	surface-to uildings ot	r coeffic -volum her tha	cient e rati an re	and the prima to of the buildi sidential, offic is based on a	ng. ce and e	educatior	al buildings					

Assessment of energy carriers in Hungary

The assessment of the energy performance of buildings by use of non-renewable primary energy factors (related to delivered energy) derived from the Ministerial Order (the 7/2006. (V. 24) Decree of Minister without Portfolio about Determination of Energy Efficiency of Buildings. Since its introduction (2006) the primary energy factors have been modified two times (in 2012 and in April 2014), particularly those for district heating.

Table 101: Hungarian primary energy factors

Label / type of factor	Primary Energy Factors Hungary
Used for EPC rating	Х
Used for building regulations requirements	Х
Label (national language)	Primer energia tényezők [TNM, 2006] 2014-es változata szerint
Description / type of weighting factor	non-renewable energy, includes upstream energy expenditures (transportation, transformation) beyond national boundary
Factor is multiplied by delivered energy based on the	net calorific value (H _i)
Reference	[TNM, 2006]
Natural gas	1
Heating oil	1
Hard coal	1
Electricity	2.5
Off peak electricity	1.8
District heating without CHP	1.26 / 1.12*
District heating with 67 % CHP	0.83
District heating biomass without CHP	0.76
District heating biomass with 67 % CHP	0.50

*) deviation of [BM, 2014] from [TNM, 2006], starting from January 2014.

Methodological points for discussion in Hungary

The most relevant discussion points are:

- Primary energy factors for district heating;
- Primary energy factor for biomass;
- Requirements based on surface-to-volume ratio;
- Requirements on calculation details: more details or more freedom.

3.11.2 Integration of National Requirements for New Buildings and NZEB Standards in the Hungarian Residential Building Typology

In parallel to the development of the present typology, similar work was being carried out as part of the development of the National Building Energy Strategy. The two typologies show some resemblance, but there are also important differences. The objective of the EPISCOPE typology is to contribute to a uniform European typology, and – based on available statistical data – estimations concerning the entire European building stock.

Hungary was not represented in the previous TABULA project, the complete typology was developed within EPISCOPE, and thus the NZEB buildings were introduced at the same time as the existing buildings.

Classification scheme for the Hungarian residential building stock ("Building Type Matrix")

Е

During the IEE Project EPISCOPE the building type matrix was developed for Hungary, reflecting to the current building regulation. Figure hereunder shows the respective matrix.

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	national	1944	generic	HU.N.SFH.01.Gen		HU.N.MFH.01.Gen	
2	national	1945 1979	generic	HU.N.SFH.02.Gen		HU.N.MFH.02.Gen	
3	national	1980 1989	generic	HU.N.SFH.03.Gen		HU.N.MFH.03.Gen	
4	national	1990 2005	generic	HU.N. SFH. 04. Gen		HU.N.MFH.04.Gen	
5	national	2006	generic	HU.N. SFH. 05.Gen		HU.N.MFH.05.Gen	HU.N.AB.05.Gen
6	national	1945 1979	industrialized technology				HU.N.AB.02. Ind
7	national	1980 1989	industrialized technology				HU.N.AB.03. Ind
8	national	1944	Flat area: below 80 m2	HU.N.SFH.01. Bel80			
9	national	1945 1979	Flat area: below 80 m2	HU. N. SFH. 02. Bel80			

Figure 46: Classification scheme ("Building Type Matrix") of the Hungarian residential building typology including new buildings

		SFH.05	TH	MFH.05	AB.05
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		HU.SFH.05.Gen	-	HU.MFH.05.Gen	HU.AB.05.Gen
Number of dwellings		1		5	30
Number of full storeys (conditioned)		2		3	5
Number of directly attached neighbour buildings		0		1	0
National reference area (conditioned floor area, internal dimensions)	m²	131		373	1702
TABULA reference area (conditioned floor area, internal dimensions)	m²	131		373	1702

Table 102: Exemplary new buildings representing the latest construction year classes (2006 ...)

Building example: variants meeting three energy performance levels for new buildings

In the following the exemplary multi-family house (MFH.05) will be demonstrated in more detail. Comparable information for the other buildings can be found in the updated national typology brochure [BME, 2014].

Table hereunder shows the building features for different model cases. The three energy performance levels predetermined by the TABULA concept are specified as follows:

Energy Performance levels for newly constructed buildings

1) 'Current requirements'

Newly constructed building up to current code [TNM, 2006];

2) 'Advanced standard (meeting cost optimum requirements)'

Building going beyond the current code, meeting standards expected in the near future (for applications from 2015 onwards, and as a general requirement from 2018) [BM, 2014];

3) 'Nearly Zero Energy Building (nZEB)'

New building meeting expected NZEB standards [BM, 2014]. According to regulations, an nZEB building is different from a building meeting cost optimum requirements in that 25 % of its primary energy demand needs to be met from renewable sources.

Table 103: Exemplary multi-family house (MFH) - definition of variants

TT TT	MFH.05					
Variant N°		001	002	003		
Energy Performance Level	Minimum Requirement	Improved Standard	Ambitious Standard / NZEB			
U-values						
Roof (Roof 2)	W/(m²K)	0.25 (0.22)	0.15 (0.17)	0.13 (0.12)		
Wall	W/(m²K)	0.22	0.17	0.14		
Window	W/(m²K)	1.50	1.30	1.00		
Door	W/(m²K)	2.00	1.80	1.30		
Floor	W/(m²K)	0.24	0.19	0.15		
Thermal bridging supplement (whole envelope)	W/(m²K)	0.05	0.02	0.00		
Heat Supply System						
Heat generator		non-condensing boiler	condensing boiler	condensing boiler		
Thermal solar system	-	-	DHW			

LOÓGIA M/ MFH.05. 2006 után énült (énülő) úi társasház Multi family house, (to be) built after 2006 Tr TT

> Category: multi family house Year of construction: after 2006

Number of apartments: 10 or more

Number of floors: 3-4

Area, net heated: 373 m²

Additional parameters: -

Volume, net heated: 960,3 m³

Kategória: társas ház Építési idő: 2006 után Szintszám: 3-4 Lakások száma: 10 vagy több Nettó alapterület: 373 m² Nettó fűtött térfogat: 960,3 m³ Egyéb jellemző: -

MFH.05.

 Jelenlegi követelmények
 Current requirements

 Szabadonálió, kétszint és tetőtérbeépítéses
 Multi family house with converted loft. Newly társasház A jelenlegi hatályos jogszabályoknak. constructed building up to current building megfelelően épülő új épület [TNM, 2006].

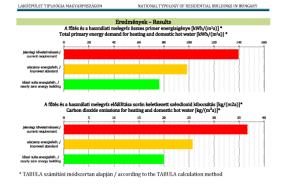
Alacsony (költségoptimum követelményeknek megfelelő) energiafelhasználás A lelenieg hatályos jogszabályokon túlimutató, a Biuliding going beyond the current code, következő éveklen váriató szabályozásnak megfelelő épület (@BM, 2014). (@BM, 2014];

BME

 Kózel nulla energiafelhasználás
 Nearly Zero Energy Bulding (nZEB)

 A várható előírásoknak megfelelő közel nulla
 New buliding meeting expected
 NZEB

 nergiafelhasználsú új épilet (ØM), 2014). A standards (ØBM, 2014). According to jogszabíly értelmében a közel nulla regulations, an nZEB buliding is different from energiafelhasználsú épilet a kötségoptimum a buliding meeting cost optimum requirements szerinti követelményeköl annyiban tér el, hogy in that 25% of its primary energy demand a primerenergia igény 25%-át megújuló
 neds to be met from renewable sources.


Külső határoló szerkez		U (W/INK)	MFH.0
Elements of the builds Fal - Wall	ng envelope	a felland	
Pal- Wall	Jelenlegi követelmény		Current requirement
	vakolat (0.5cm): polisatirol		plaster (0.5cm); polystyren
	hőszisetelés (10 cm); falazóblakk	0.22	insulation, (10cm); walling bloc
	(30cm); vakolat (1,5cm)		(30cm); plaster (1,5cm)
	Alacsony energiafelhasználás	17	Advanced standard
	vakolat (0,5cm); polisatirol		plaster (0.5cm); polystyren
	bőszinetelés (15 cm); falazóblokk	0.17	insulation, (15cm); walling bloc
	(30 cm); vakolat (2 cm)		(30cm); plaster (2cm)
	Közel nulla energiafelhasználás		Nearly zero energy building
	vakolat (0.5cm); polisztirol (20cm);		plaster (0.5cm); polystyrer
	falazóblokk (30 cm); vakolat (2cm)	0,14	insulation, (20cm); walling bloc
			(30cm); plaster (2cm)
Magastető – Pitched ro			-
	Jelenlegi követelmény		Current requirement
	Magastető: cserép (2cm); lécezés;		Pitched roof: tile (2cm); lat
	alátéthéjazat; közetgyapot (15cm);	6.25	waterproofing; mineral wo
	párazáró lemez; gipszkarton		insulation (15cm); vapour barrie
	(1.25cm);		plasterboard (1.25cm);
	Padlásfödém; ásványgyapot hószi-		Attic slah: mineral wool insulatio
	getelés (15cm); vasbeton (15cm);	(0,22)	(15cm); reinforced concrete (15cm
	vakolat (1.5cm)		plaster (1,5cm)
	Alacsony energiafelhasználás	8 1	Advanced standard
W 200000000000 200	Marastető; cserén (2cm); lécezés;	-	Pitched roof: tile (2cm); lat
A CONTRACTOR OF A CONT	alátéthéjazat; közetgyapot (25cm);	0.15	waterproofing mineral wo
	párazáró lennez; gipszkarton	0,15	insulation (25cm); vapour barrie
	(1,25cm);		plasterboard (1.25cm);
	Padlásfödém: ásványgyupot hőszi-	(0.17)	Attic slab: mineral wool insulation
The second s	getelés (20cm); vasheton (15cm);	fores ?	(20cm); reinforced concrete (15cm
	vakolat (1,5cm)		plaster (1,5cm)
	Közel nulla energiafelhasználás		Nearly zero energy building
	Magastető: cserép (2cm); lécezés; alátéthéjazat; PIR hab hőszig,		Pitched roof: tile (2cm); lat waterproofing; PIR foam insulation
	(20cm); párazáró lemez; sipszkarton	0.13	(20cm): vapour barrie
	(1,25cm);	0,20	plasterboard (1.25cm);
	(vienal),		hand reacting.
	Padlásfödém: ásványgyupot hőszi-	(0.12)	Attic slah: mineral wool insulation
	getelés (30cm); vasheton (15cm);	(* · · · · · · · · · · · · · · · · · ·	(30cm); reinforced concrete (15cm
	vakolat (1,5cm)		plaster (1,Scm)
Pincefödém – Cellar ce	iling		
	Jelenlegi követelmény		Current requirement
	parketta (2cm); aljzatheton (6cm);		parquet (2cm); concrete (6cm
	polisztirol (4cm); vasbeton födém	0.24	polystyrene (4cm); rc. slab (20cm
	(20 cm), hőszigetelés (10cm)		thermal insulation (10cm)
	Alacsony energiafelhasználás		Advanced standard
And an other states of the	parketta (2cm); algatheton (6cm);	1000	parquet (2cm); concrete (6cm
	polisztirol (4cm); vasheton födém	0,19	polystyrene (4cm); rc. slab (20cm
	(20 cm), hőszigetelés (15cm)		thermal insulation (15cm)
	Közel nulla energiafelhasználás parketta (2cm): alizatheton (6cm):		Nearly zero energy building parquet (2cm): concrete (6cm
	parketta (2cm); algatheton (6cm); polisztirol (4cm); vasheton födém	0.15	parquet (2cm); concrete (6cm polystyrene (4cm); rc. slab (20cm

LARÓÉPÜLET TIFLOÓGIA MAGVARPRSZÁGON

EME

EPISCOPE

NATIONAL TYPOLOGY OF RESIDENTIAL BUILDINGS IN EUNGARY

IT BEERE	jelenlegi követelmény		Current requirement
	Hőszigetelt, kétrtg, űvegezésű ablak, low-e bevonattal, argon gáz töltéssel	1,50	Window with double-glazing, low-e coating and argon gas filling
	Alacsony energiafelhasználás		Advanced standard
2	Hőszigetelt, kétrtg, üvegezésű ablak, low-e hevonattal, argon gáz töltéssel	1,30	Window with double-glazing, low-e coating and argon gas filling
	Közel nulla energiafelhasználás	4	Nearly zero energy building
	Háromrtg, üvegezésű ahlak, low-e bevonattal, argon gáz töltéssel	1,00	Window with triple-glazing, low-e coating and argon gas filling
Ajtó -Door			
	Jelenlegi követelmény	S	Current requirement
	Fa bejárati ajtó	2,00	Wooden entrance door
100	Alacsony energiafelhasználás		Advanced standard
-	Hőszigetelt ajtó	1,80	Thermal insulated door
	Közel milla energiafelhasználás	1	Nearly zero energy huilding
	Hőszigetelt ajtó	1,30	Thermal insulated door
Épületgépészeti r Heating and hot v		teljtényező/ expend.coeff.	MFH.05
Pūtės - Heating sy	stem	0.00	
ALTER TO A DOME TO A DOM	Jelenlegi köyetelmény		Current requirement

Pütés - Heating system		2.0	
	Jelenlegi követelmény		Current requirement
L	állandó hőmérsékletű gázkazán	1,30	constant temperature non- condensing boiler
=	Alacsony energiafelbasznákás		Advanced standard
	kondenzációs gázkazán, fordulat- szám szah. szivattyú, cirkuláció	1,03	condensing boiler, variable RPM pump, circulation
	Közel nulla energiafelhasználás		Nearly zero energy building
	kondenzációs gázkazán, fordulat- szám szab. szivattyű, cirkuláció	1,03	condensing boiler, variable RPM pump, circulation
asználati melegyiz -			a Standard Science States and
and the state of the	Jelenlegi követelmény		Current requirement
	állandó hőmérsékletű kombi gázkazán, puffertároló nélkül	1,82	constant temperature non- condensing boiler
-	Alacsony energiafelhasználás		Advanced standard
	kondenzációs gázkazán, puffer tároló nélkül	1,13	condensing boiler, no buffer tank, house central heating
	Közel nulla energiafelhasználás		Nearly zero energy building
	kondenzációs gázkazán, szolár rásegítés 10%, indirekt tároló,	1,13	condensing boiler, DHW tank, circulation + solar thermal system

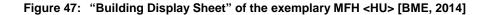


 Table 104:
 Exemplary MFH – Results of the energy balance calculation; Procedure: national calculation method according to the current building code: [TNM, 2006] and [BM, 2014]

Variant N°		001	002	003	
Label of the variant triplet			MFH.05		
Variation level		Minimum Require- ment	Ambitious Standard / NZEB		
Calculation method			TABULA		
National reference area (conditioned floor area, internal dimensions)	m²	373	373	373	
Thermal transfer coefficient by transmission. related to envelope area	W/(m²K)	0.64	0.48	0.38	
Energy need for heating	kWh/(m²a)	34.7	24.9	17.8	
Delivered energy					
Fossil fuels	kWh/(m²a)	92.5	63.3	69.1	
Electricity	kWh/(m²a)	4.24	5.7	3.5	
Primary energy demand	kWh/(m²a)	103.1	77.6	67.2	

In addition, the national requirements are for NZEB are not specified in a detailed manner yet in the legislation, therefore the figures are indicative.

TABULA calculation results for all exemplary buildings

Table 105 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal k/\h/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other k/\h/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum Requirement	1.04	73	0	73	85	10	32	146	0	0	0	2	0	0	0
The second s	02	Improved Standard	0.63	51	0	51	56	10	13	74	0	0	0	2	0	0	0
HU.SFH.05.Gen	03	Ambitious Standard / NZEB	0.47	41	0	41	46	10	19	58	0	0	0	3	0	0	0
MFH	01	Minimum Requirement	0.71	58	0	58	71	15	18	125	0	0	0	3	0	0	0
	02	Improved Standard	0.54	45	0	45	57	15	19	80	0	0	0	6	0	0	0
HU.MFH.05.Gen	03	Ambitious Standard / NZEB	0.37	34	0	34	46	15	19	67	0	0	0	3	0	0	0
AB	01	Minimum Requirement	0.61	51	0	51	64	15	20	101	0	0	0	4	0	0	0
	02	Improved Standard	0.48	40	0	40	53	15	20	76	0	0	0	4	0	0	0
HU.AB.05.Gen	03	Ambitious Standard / NZEB	0.35	32	0	32	37	15	20	58	0	0	0	1	0	0	0
Explanation of C	Quanti																
h_Transmission						coefficie	nt by trar	nsmissior	1 / indicat	or for ener	gy quality	of build	ling enve	elope (co	mpactne	ss + insi	ulation)
q_h_nd			rgy need ble contri			n hoat ra	COVORY										
<pre>q_ve_rec_h_usable q_h_nd_net</pre>								h usahl	e)								
q_g_h_out	kWh/(m²a) net energy need for heating (q_h_nd - q_ve_rec_h_usable) kWh/(m²a) generated heat heating system (net energy need + storage losses + distribution losses)																
q_w_nd			energy ne				. 37		,- 100000	alsanda		-/					
q_g_w_out							storage	losses +	distributi	on losses)							
q_del_sum_gas,u coal,bio,, dh,other,	_el,	· ·			0,			al, bioma	ss, electi	ricity, distri	ct heating	g, other (energy c	arriers			
q_exp_sum_el kWh/(m²a) sun			sum produced electricity (negative value)														

Table 105:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

Е

3.11.3 Sources / References Hungary

Table 106: Sources / References Hungary

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[BM, 2012]	40/2012. (VIII. 13.) BM rendelet az épületek ener- getikai jellemzőinek meghatározásáról szóló 7/2006. (V. 24.) TNM rendelet módosításáról	Hungarian Decree of the Minister of Interior 40/2012 (VIII. 13.) and the ammendment of the 7/2006. (V. 24)
[BM, 2014]	20/2014. (III. 7.) BM rendelet az épületek energeti- kai jellemzőinek meghatározásáról szóló 7/2006. (V. 24.) TNM rendelet módosításáról	Hungarian Decree of the Minister of Interior 20/2014 (III. 7.) on the ammendment of the 7/2006. (V. 24)
[BME, 2014]	Csoknyai Tamás PhD, Hrabovszky-Horváth Sára, Seprődi-Egeresi Márta, Szendrő Gábor: LAKÓÉ- PÜLET TIPOLÓGIA MAGYARORSZÁGON, Epi- scope project kiadvány, 2014	Csoknyai Tamás PhD, Hrabovszky-Horváth Sára, Seprődi-Egeresi Márta, Szendrő Gábor: NA- TIONAL TYPOLOGY OF RESIDENTAL BUILD- INGS IN HUNGARY, Episcope project brochure, 2014
[TNM, 2006]	7/2006. (V.24.) TNM rendelet: Az épületek ener- getikai jellemzőinek meghatározásáról	Ministerial Order (the 7/2006. (V. 24) Decree of Minister without Portfolio, about Determination of Energy Efficiency of Buildings

3.12 <IE> Ireland

(by EPISCOPE partner Energy Action)

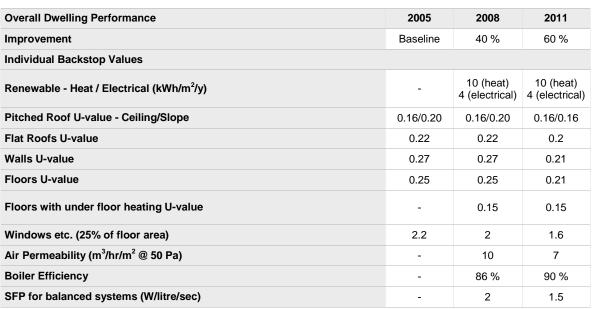
Draft Building Regulations were first introduced in Ireland in 1976 and were subsequently revised in 1981. Formal Building Regulations were officially introduced in Ireland in 1991 and there were subsequent revisions to the Regulations in 1997, 2002, 2005, 2008 and 2011.

Regarding the promotion of lower energy buildings, the House of Tomorrow Programme was launched in 2001 by Sustainable Energy Ireland, (since reconstituted as the Sustainable Energy Authority of Ireland – Ireland's national energy authority). The aim of the House of Tomorrow programme was to accelerate improvements in the quality of energy performance of Irish dwellings and to encourage the market uptake of cost-effective innovation. Central to this was the establishment of a nationwide network of living examples of houses incorporating superior energy features.

The heart of the programme was a demonstration scheme which part funded private and social housing developments that would deliver a saving of over 40 % in energy consumption and associated CO2 emissions relative to what would apply under the then current Building Regulations.

In total, over 124 housing developments were provided with funding support of €33m, involving over 5,300 units in every county in Ireland. These developments used a strong array of innovative technologies and practices, from insulation materials, advanced windows, and highly efficient boilers, to healthy ventilation control systems, energy efficient lighting and renewable energy systems including solar, heat pumps and biomass heating. The programme supported a further 23 projects in the form of installer training, technology guides, feasibility studies, research into housing performance and postgraduate studentships to help build awareness and capability among practitioners in the specification and implementation of innovative energy technology features in Irish houses. The House of Tomorrow Programme ceased in 2010.

3.12.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Ireland


The revised Building Regulations in 2008 and 2011 [TGD Part L 2011] represented a 40 % and 60 % respectively reduction in energy demand of a reference dwelling as defined in Appendix C of Technical Guidance Document Part L of the 2005 Building Regulations [TGD Part L 2005].

A 70 % improvement in energy demand (compared to the 2005 reference dwelling) is proposed for the 2016 revision of the Building Regulations by the Department of Environment, Community and Local Government [DECLG 2012]. This will set the Nearly Zero Energy Building standard for new dwellings in Ireland in accordance with the common general framework set out in Annex 1 of Directive 2010/31/EU on the Energy Performance of Buildings (Recast). For a typical dwelling, this will equate to an A2 rating with a primary energy value of 45 kWh/m2/annum and an energy performance co-efficient (EPC) and carbon performance co-efficient (CPC) not exceeding 0.302 and 0.305 respectively.

Minimum requirements for new residential buildings in Ireland

Technical Guidance Document (TGD) Part L (Conservation of Fuel and Energy - Dwellings) [TGD Part L 2011] sets out the building energy standards required for compliance with the 2011 Irish Building Regulations.

The revision to the minimum energy performance requirements in 2008 and 2011 from the 2005 baseline are shown in Table 107.

Table 107: Ireland – revisions to building energy performance levels

For new dwellings, the 2011 Building Regulations require a minimum renewable contribution of 10 kWh/m²/ year from thermal sources or 4 kWh/m²/year of electrical energy or a combination of both. Air Permeability shall not exceed $7m^3/hr/m^2$ when tested in accordance with the defined procedure. Fabric U values shall not exceed the values listed in Table 107 though scope does exist for higher values in some locations once the overall average U value levels are achieved.

Ireland calculation method to comply with new building regulations for residential buildings

The Dwelling Energy Assessment Procedure (DEAP) [DEAP 3.2.1] is the Irish official procedure for calculating and assessing the energy required for space heating, ventilation, water heating and lighting, less savings from energy generation technologies. DEAP calculates the annual delivered energy consumption, primary energy consumption and carbon dioxide emission for standardised occupancy.

The DEAP software contains equations or algorithms representing the relationships between the factors contributing to the annual energy performance of the dwelling. The software is accompanied by a series of reference data tables.

DEAP is compliant with the methodology framework in the EU Energy Performance of Buildings Directive (EPBD). The DEAP calculation framework is based on IS EN 13790, and draws heavily on the calculation procedures and tabulated data of the Standard Assessment Procedure (SAP) for energy rating of dwellings in the UK.

DEAP is used to demonstrate compliance with the EPBD in Ireland including elements of the Irish Building Regulations Part L 2005, 2008 and 2011 for new dwellings. For Building Regulations 2005 TGD L, the DEAP software calculates the Carbon Dioxide Emission Rate (CDER) of the dwelling, and the corresponding Maximum Permitted Carbon Dioxide Emission Rate (MPCDER), expressed in units of kg CO2 per square metre per annum. This provision applies to new dwellings built between 1st July 2006 and 1st July 2008 subject to transitional arrangements cited in Building Regulations 2005 TGD L.

DEAP compares the dwelling's Energy Performance Coefficient (EPC) and Carbon Performance Coefficient (CPC) to the Maximum Permitted Energy Performance Coefficient (MPEPC)

and Maximum Permitted Carbon Performance Coefficient (MPCPC) for Building Regulations 2008 and 2011 TGD L. DEAP also determines if the Building Regulations 2008 and 2011 TGD L renewables requirement is satisfied. Building Regulations 2008 TGD L applies to new dwellings from 1st July 2008 and Building Regulations 2011 TGD L applies to new dwellings from 1st December 2011.

DEAP confirms that the fabric heat loss is limited as defined in the 2005, 2008 and 2011 Building Regulations TGD L. DEAP checks that the building air permeability is limited as defined in the Building Regulations 2008 and 2011 TGD L documents. DEAP flags the lack of an air permeability test as a non-compliance where a test result is not specified. The permeability test result specified in DEAP should follow the guidance and sampling regimes outlined in the applicable TGD L documents.

The Building Regulations TGD L documents provide guidance on the applicability of each TGD L edition to dwellings based on dwelling age, date of planning permission and construction.

Status of NZEB definition for residential buildings in Ireland

The Irish Department of Environment, Community and Local Government set out the Irish NZEB definition for residential buildings in its policy document "Towards Nearly Zero Energy Buildings in Ireland – Planning for 2020 and beyond" [DECLG 2012].

By 2020 all new dwellings in Ireland will have an Energy Performance Coefficient (EPC) and Carbon Performance Coefficient (CPC) of 0.302 and 0.305 in accordance with the common general framework set out in Annex I of Directive 2010/31/EU on the energy performance of buildings (recast). This takes account of the energy load for space heating, water heating, fixed lighting and ventilation. For a typical dwelling this will equate to 45 kWh/m2/annum, a very significant proportion of which will be covered from renewable energy sources produced on-site or nearby.

In terms of BER certificates, this will have the effect that all new dwellings should be rated as A2 or higher.

The improvements in the energy and carbon factors and the EPC ratings since the 2005 Building Regulations up to the proposed NZEB standard in 2016 are detailed in Table 108.

Building Regulations: Part L (Average Dwelling)	2005	2008	2011	NZEB (2016)
% Improvement	Baseline	40 %	60 %	70 %
Primary Energy Consumption (kWh/m2/a)	150	90	60	45
CO2 Emission Rate (kgCO2/m2/a)	30	18	12	10
EPC rating	B3	B1	A3	A2
Maximum Permitted Energy Performance Co-efficient (MPEPC)	-	0.6	0.4	0.302
Maximum Permitted Carbon Performance Co-efficient (MPCPC)	-	0.69	0.46	0.305

Table 108: Ireland – energy and carbon performance limits for dwellings

The maximum elemental U values, air permeability levels and renewable contributions for the NZEB standard have yet to be published (as at July 2014).

Table 109: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB definition for residential buildings in Ireland

Legislation / Standards NZEB standard will achieve 70% re- duction in energy demand compared to reference dwelling set out in 2005 building Regulations. NZEB standard will achieve 70% re- duction in energy demand compared to reference dwelling set out in 2005 building Regulations. TGD Part L 2011 represents a 60 % reduction in energy demand of a reference dwelling as defined in Appendix C of Technical Guidance Document Part L of the 2005 Building Regulations [TGD Part L 2005]. No deviations expected. X Heating X DHW Appliances Cooling X Auxiliary Other: Ventilation X Ventilation X Lighting Ventilation X Calculation of energy need for heating (building) monthly No deviations expected. X Calculation of delivered energy (system) monthly No deviations expected. X Ventilation of Special Technologies No deviations expected. Thermal solar system Feed-in Sett-ust to determine to determine to determine to to determine to setting On-site CHP x x Year On-site PV x x Year On-site Intergy generation systems: Thermal solar system: Sett-ust to determine to considered for thy: set use considered for "HC-W-HE": Heating - Cooling - DHW: Household Electricity: Thermal solar systems: Ventilation system with heat recovery x Ye				Calculation	Metho	d New	Building R	Regulation	s – (part 1)	
Activitiant Keduriant Keduriant Keta Ketakurina bundhigs assumed National XZEB Definition Legislation / Standards MZEB standard will achieve 70% re- clustion in energy demand compared to reference dwelling as elucition in energy demand of a reference welling as elucitions expected. No deviations expected. x Heating x DHW Appliances No deviations expected. x Ventilation x Lighting monthly x Calculation of delivered energy (system) monthly x Ventilation system with heat recovery monthly x Ventilation system with heat recovery Ventilation system with heat recovery 0n-site CHP x x Year 0n-site CHP x x Year 1 Year are are to the elective demand of the building is decety coveret by the produced electric by delivered energy	Count	try IE	i li	reland					Status	07/2014
Calculation of Comments Calculations Calculation of Comments Calculations Calculation of Comments Calculation of Appendix C of Technical Guidance Document Part L of the Soft High Regulations. No deviations expected. X Heating X DHW Appliances X Cooling X Auxiliary Other: X Ventilation of Comments Cooling X Auxiliary Cooling X Auxiliary Other: Ventilation serpected. X Ventilation of Comments Calculation of delivered energy (system) monthly X Calculation of delivered energy (system) monthly X Ventilation system with heat recovery X X Ventilation system with heat recovery Salfuse X Ventilation system in the exterior of Special Technologies No deviations expected. X Ventilation system with heat recovery X X Ventilation system in the exterior of Special Technologies X Ventilation system is a seturate X Ventilatio	National Requirements for New Residential Buildings								Special Aspects assumed Nation	with regard to the al NZEB Definition
x Heating x DHW Appliances Cooling x Auxiliary Other: Image: Construct to the second secon	Legislation / Standards Technical Guidance Document (TGD) Part L (Conservation of Fuel and Energy - Dwellings) [TGD Part L 2011] sets out the building energy standards required for compliance with the 2011 Irish Building Regulations. Explanation / Comments TGD Part L 2011 represents a 60 % reduction in energy demand of a reference dwelling as defined in Appendix C of Technical Guidance Document Part L of the 2005 Building Regulations ITGD Part L 20051							duction in energy reference dwelling	demand compared to g set out in 2005	
Cooling x Auxillary Other: Image: Construct on the second of the	Energ	y Servic	es						No deviations exp	ected.
x Ventilation x Lighting	_	-		DHW	Арр	liances				
Explanation / Comments Calculation Procedure Calculation period No deviations expected. X Calculation of energy need for heating (puilding) monthly Explanation / Comments Consideration of Special Technologies monthly No deviations expected. Thermal systems Ventilation system with heat recovery Ventilation system with heat recovery No deviations expected. X Ventilation system with heat recovery Ventilation systems: Sett-use Sett-use Sett-use Sett-use Sett-use Sett-use Considered for heating determine and determine det		Cooling	x	Auxiliary	Othe	er:				
Calculation Procedure Calculation period No deviations expected. x Calculation of energy need for heating (building) monthly monthly x Calculation of delivered energy (system) monthly monthly Explanation / Comments Consideration of Special Technologies Thermal Systems No deviations expected. x Ventilation system with heat recovery x Thermal solar system Other special systems: Self-use ¹ Self-use ¹ Self-use ¹ Self-use ¹ Self-use ¹ Self-use ¹ On-site Electricity Production Feed-in Self-use ¹ <td< td=""><td>x</td><td>Ventilation</td><td>x</td><td>Lighting</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	x	Ventilation	x	Lighting						
X Calculation of energy need for heating monthly monthly x Calculation of delivered energy (system) monthly Explanation / Comments monthly Consideration of Special Technologies monthly Thermal systems self-use x Ventilation system with heat recovery self-use X Ventilation systems self-use Other special systems: self-use On-site CHP x x Y ear H-C-W-HE H-C-W-HE On-site PV x x Other energy generation systems: self-use * Year On-site CHP x x Year HE Other energy generation systems: transminue of the electricity demand of the building is directly covered by the produced electricity rest use considered for *H-C-W-HE? * Year HE Other energy generation system: self-use * Year HE Vulke pV, all kWhs generated are offset against the calculated annual energy demand. calculated annual energy demand energy demand. X U-values of building elements renregy end for heating </td <td>Explana</td> <td>ation / Com</td> <td>ments</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Explana	ation / Com	ments							
A (building) Intentity X Calculation of delivered energy (system) monthly Explanation / Comments monthly Consideration of Special Technologies monthly Thermal Systems ventilation system with heat recovery ventilation systems X Ventilation systems: ventilation systems: ventilation systems: Other special systems: ventilation systems: ventilation system On-site CHP X X Year On-site CHP X X Year On-site PV X X Year Other energy generation systems: ventile is directly covered by the produced electricity; self use considered for H-C-W-HE? Heating: Cooling - DHW - Household Electricity * V-values of building elements primary energy denerated are offset against the calculated annual energy denard. Energy Performance Coefficient (EPC and Carbon Performance Coefficient (CPC) limits to be set at 0.302 and 0.305 respectively. X U-values of building elements x Primary energy energy With PV, all kWhs generated are offset against x Contribution from renewable technologies Solitient (CPC) limits to be set at 0.302 and 0.305 respectively.	Calcu	lation Pr	ocedu	re		Cal	culation period	ł	No deviations exp	ected.
Explanation / Comments No deviations expected. Consideration of Special Technologies No deviations expected. Thermal Systems Ventilation system with heat recovery Ventilation system with heat recovery X Thermal solar system Other special systems: Self-use1 Other special systems: Feed-in Self-use1 Self-use1 On-site CHP X X Year H-C-W-HE1 On-site PV X X Year HE Other energy generation systems: ************************************			of ener	gy need for hea	ating		monthl	у		
Thermal Systems X Ventilation system with heat recovery x Ventilation system with heat recovery x Thermal solar system Other special systems: Self-use Other special systems: Self-use On-Site Electricity Production Feed-in Self-use Self-use On-site CHP x x Year HE On-site PV x x Year HE Other energy generation systems: Image: Self-use Self-use <th< td=""><td>x</td><td>Calculation</td><td>of deliv</td><td>ered energy (s</td><td>ystem)</td><td></td><td>monthl</td><td>у</td><td></td><td></td></th<>	x	Calculation	of deliv	ered energy (s	ystem)		monthl	у		
Thermal Systems x Ventilation system with heat recovery x Thermal solar system Other special systems: Self-use1 Dersite Electricity Production Feed-in Self-use1 Balance period to determine confidence tor the C-W-HE On-site CHP x x Year H-C-W-HE Other energy generation systems: Total Total Energy Performance Coefficient (EPC many transmission) x U-values of building elements x X Primary energy energy energy and coefficient toy transmission Energy Performance Coefficient (EPC many energy energy for the set at 0.302 and 0.305 respectively. x U-values of building elements x Primary energy energy energy energy and to be total for the set of the set at 0.302 and 0.305 respectively. Energy Performance Coefficient (EPC many energy energy for the set at 0.302 and 0.305 respectively. x U-values of building elements x Primary energy energ	Explana	ation / Com	ments							
Other special systems: Feed-in Self-use 1 Balance period to determine considered for H-C-W-HE On-Site CHP X X Year H-C-W-HE On-site PV X X Year HE Other energy generation systems: X Year HE Other special systems: Tiself use' = parts of the electricity demand of the building is directly covered by the produced electricity; self use considered for 'H-C-W-HE': Heating - Cooling - DHW - Household Electricity Heat transfer coefficient by the calculated annual energy demand. Type of Requirements (new buildings) X Primary energy total Energy Performance Coefficient (CPC) limits to be set at 0.302 and 0.305 respectively. X U-values of building elements X Carbon divide emissions contribution from renewable technolo- gies Mith PV, all kWns generated are officient by transmission X Primary energy total coalcoal to the set at 0.302 and 0.305 respectively.	Therma	I Systems			-	5			No deviations exp	ectea.
Ch-Site Electricity Production Feed-in Self-use ¹ Balance period to determine self-use ¹ Self-use considered for H-C-W-HE ¹ On-site CHP x x Year H-C-W-HE ¹ On-site PV x x Year HE Other energy generation systems: x Year HE Other energy generation systems:	x	Thermal so	lar syste	em	-					
On-Site Electricity Production Feed-in Self-use ¹ to determine self-use ¹ considered for H-C-W-HE ¹ On-site CHP x x Year H-C-W-HE ¹ On-site PV x x Year HE Other energy generation systems: x Year HE Other energy generation systems:		Other spec	ial syste	ms:						
On-site PV x x Year HE Other energy generation systems: Other energy generation systems: Image: Contribution of the building is directly covered by the produced electricity self use considered for "H-C-W-HE": Heating - Cooling - DHW - Household Electricity Explanation / Comments Image: Contribution of the contribution of the building selectricity Image: Contribution of the contribution from renewable technologies Energy need for heating X Primary energy Image: Contribution from renewable technologies Energy need for heating X Contribution from renewable technologies Contribution from renewable technologies	On-Site	Electricity I	Producti	on	Feed-in	Self-use ¹	to determine	considered for		
Other energy generation systems: ¹ "self use" = parts of the electricity demand of the building is directly covered by the produced electricity; self use considered for "H-C-W-HE": Heating - Cooling - DHW - Household Electricity Explanation / Comments With PV, all kWhs generated are offset against the calculated annual energy demand. Type of Requirements (new buildings) x U-values of building elements Heat transfer coefficient by transmission x Primary total Energy need for heating x Carbon dioxide emissions Delivered energy x Nother Contribution from renewable technologies		On-site CH	Р		x	x	Year	H-C-W-HE		
* "self use" = parts of the electricity demand of the building is directly covered by the produced electricity; self use considered for "H-C-W-HE": Heating - Cooling - DHW - Household Electricity Explanation / Comments With PV, all kWhs generated are offset against the calculated annual energy demand. Type of Requirements (new buildings) x U-values of building elements Heat transfer coefficient by transmission x Primary transmission x Energy need for heating x Carbon divide emissions Contribution from renewable technologies		On-site PV			x	x	Year	HE		
ity: self use considered for "H-C-W-HE": Heating - Cooling - DHW - Household Electricity Explanation / Comments With PV, all kWhs generated are offset against the calculated annual energy demand. Type of Requirements (new buildings) x U-values of building elements Heat transfer coefficient by transmission x Primary transmission x Carbon divide emissions x Delivered energy x 0 Delivered energy x Other Contribution from renewable technologies		Other energ	gy gene	ration systems:						
x U-values of building elements x Primary energy Primary energy Energy Performance Coefficient (EPC and Carbon Performance Coefficient (CPC) limits to be set at 0.302 and 0.305 respectively. i Heat transfer coefficient by transmission x Carbon divide emissions Contribution from renewable technologies i Energy need for heating x Other Contribution from renewable technologies										
x U-values of building elements x Primary energy total and Carbon Performance Coefficient (CPC) limits to be set at 0.302 and 0.305 respectively. Meat transfer coefficient by transmission x Carbon divide emissions Energy need for heating x Carbon divide emissions Delivered energy x Other Contribution from renewable technolo- gies				ted are offset	against	the calcu	ulated annual	energy de-		
x U-values of building elements Primary energy total (CPC) limits to be set at 0.302 and 0.305 respectively. Meat transfer coefficient by transmission x Carbon dioxide emissions Energy need for heating x Carbon dioxide emissions Delivered energy x Other Contribution from renewable technolo- gies	Туре	of Requi	remen	ts (new bui	ldings)					
Heat transfer coefficient by transmission x Hindry energy total 0.305 respectively. Energy need for heating x Carbon dioxide emissions 0.305 respectively. Delivered energy x Other Contribution from renewable technolo- gies	x	U-values of	building	g elements		Drives e r				
Delivered energy x Other Contribution from renewable technolo- gies				cient by	x	-	total		(
Delivered energy x Other renewable technolo- gies		Energy nee	ed for he	ating	x	Carbon	dioxide emiss	ions		
Explanation / Comments		Delivered e	nergy		x	Other	renewable			
	Explana	ation / Com	ments							

Assessment of energy carriers in Ireland

The national primary energy factors are published by the Sustainable Energy Authority of Ireland and are also incorporated into Ireland's DEAP calculation method. The national primary energy factors used in DEAP are also used for Irish entries in TABULA.

<IE> Ireland

Table 110: Ireland primary energy factors

Label / type of factor	Primary Energy Factor	CO ₂ Equivalent Factors
Used for EPC rating	x	x
Used for building regulations requirements	x	x
Label (national language)	Primary Energy	CO ₂ Emissions Indicator
Description / type of weighting factor	non-renewable + renewable energy amounts, includes upstream energy expenditures (transportation, transforma- tion)	non-renewable + renewable energy amounts, includes upstream energy expenditures (transportation, transforma- tion)
Factor is multiplied by delivered energy based on the	gross calorific value (H _s)	gross calorific value (H_s)
Reference	[SEAI s.a.], [SEAI 2013], [SEAI 2014]	[SEAI s.a.], [SEAI 2013], [SEAI 2014]
Unit		kg/kWh
Natural Gas	1.1	0.203
Heating Oil	1.1	0.203
Coal	1.1	0.203
Wood Pellets	1.1	0.203
Electricity	2.45	0.555
Electricity Production CHP	2.45	0.555
Electricity production PV system	2.45	0.555
District heating	1.28	0.237
District heating without CHP	1.28	0.237

Methodological points for discussion in Ireland

The 2011 Building Regulations in Ireland for dwellings require that the permitted technical limits for components set out in Table 108 are achieved. Even when the values are achieved, additional measures are often required in order to meet the EPC and CPC limits and thus achieve compliance with the Building Regulations. One of the most common additional measures is to install PV panels on the roof in order to generate electricity.

The DEAP calculation method offsets 100 % of the electricity generated against the calculated energy demand of the dwelling. While it is likely that the PV output will exceed the electrical demand in the building (especially during summer months) and hence excess electricity production will be exported to the network, this is not accounted for in the DEAP calculation. Also financially beneficial feed-in tariffs have not been available in Ireland (the electrical networks in Ireland will only pay approximately 50 % of the standard kWh price for exported production) and so meters allowing for both import and export are not commonly fitted.

As PV becomes increasingly used on new Irish Buildings, the issues above will need to be addressed.

Prior to the TABULA project, no formal building typology has been compiled in Ireland on either a national or regional level.

However, several reports such as 'Homes for the 21st Century' (UCD Energy Research Group/ Energy Action - 1999) [Energy Action 1999] and 'The Irish National Survey of Housing Quality 2001-2002' [Watson/James 2002] contained useful building typology data. The Irish Census also contains some building-related national statistics. The introduction of the Irish Building Energy Rating (BER) method known as Dwelling Energy Assessment Procedure [DEAP 3.2.1] by the Sustainable Energy Authority of Ireland (SEAI) in 2007 following implementation of the Energy Performance of Buildings Directive provided a natural reference point for the development of an Irish typology. In addition, the natural growth of BER data within SEAI's central Irish database of BER certificates over the duration of the project from 2009 to 2012 proved a further source of reference data.

The Irish building typology was developed by combining data from both existing research sources and from new sources, many of which evolved since the legal requirement for the production of BER certificates for existing dwellings when sold or rented from 1 January 2009. The Irish TABULA typology brochure [Energy Action 2012] contains brochures on 30 Irish house types.

New buildings meeting the 2011 Buildings Regulations and the proposed NZEB standard have been added to the 2014 edition of the Irish TABULA brochure [Energy Action 2014].

Classification scheme for the Irish residential building stock ("Building Type Matrix")

<IE> Ireland

During the IEE Project EPISCOPE the building type matrix was extended towards new buildings, reflecting the current and future legal requirements. Figure 48 shows the respective matrix. Three further examples buildings have been identified which are now used for showcase calculations reflecting possible practical implementations of new buildings according to the national minimum requirements and future NZEB standards (Table 111).

Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
national	1899	generic	IE.N.SFH.01.Gen	IE.N.TH.01.Gen		
national	1900 1929	generic	IE.N.SFH.02.Gen	IE.N.TH.02.Gen		
national	1930 1949	generic	IE.N.SFH.03.Gen	IE.N.TH.03.Gen		
national	1950 1966	generic	IE.N.SFH.04.Gen	IE.N.TH.04.Gen		IE.N.AB.04.Gen
national	1967 1977	generic	IE.N.SFH.05.Gen	IE.N.TH.05.Gen		
national	1978 1982	generic	IE.N.SFH.06.Gen	IE.N.TH.06.Gen		IE.N.AB.06.Gen
national	1983 1993	generic	IE.N.SFH.07.Gen	IE.N.TH.07.Gen		IE.N.AB.07.Gen
national	1994 2004	generic	IE.N.SFH.08.Gen	IE.N.TH.08.Gen		IE.N.AB.08.Gen
national	2005 2010	generic	IE.N.SFH.09.Gen	IE.N.TH.09.Gen		IE.N.AB.09.Gen
national	2011	generic	IE.N.SFH. 10.Gen	I		IE.N.AB. 10.Gen

Figure 48: Classification scheme ("Building Type Matrix") of the Irish residential building typology [Energy Action 2014], now extended towards new buildings

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
Number of dwellings		1	1		48
Number of full storeys (conditioned)		2	2		5
Number of directly attached neighbour buildings		0	1		0
National reference area (internal dimensioned area as defined in DEAP method)	m²	117	229		3078
TABULA reference area (conditioned floor area, internal dimensions)	m²	117	229		3804

Table 111: Exemplary new buildings representing the latest construction year classes (2011 ...)

Building example: variants meeting two energy performance levels for new buildings

In order to demonstrate the variants for new buildings in more detail, the technical summary of the exemplary single family house is now shown. Similar information for the other building types can be found in the updated national typology brochure [Energy Action 2014].

Two energy performance levels (2011 and NZEB) and three variants are specified as follows.

Energy Performance Levels

1. Minimum Requirements.

Combination of building and supply system that complies with the current building regulations, [TGD Part L 2011]

2. NZEB Standard

Ambitious NZEB standard with improved U-values, heating and ventilation systems and renewable energy contribution.

Three variants have been defined or the single family house. These are:

- 1. High renewable contribution with backstop or minimum building fabrics
- 2. Medium renewable contribution with mid level building fabrics
- 3. Low renewable contribution with advanced building fabrics

Table 112 shows the building features for the different performance level and variant cases for the single family house.

Label of the variant triplet			High Rer	newables	Medium R	enewables	Low Renewables		
Variant N°			001	003	011	013	021	023	
Energy Performance Level			Minimum Requirement	Ambitious Standard / NZEB	Minimum Requirement	Ambitious Standard / NZEB	Minimum Requirement	Ambitious Standard / NZEB	
U-values									
Roof	V	V/(m²K)	0.16	0.13	0.13	0.10	0.10	0.10	
Wall	V	V/(m²K)	0.21	0.18	0.18	0.16	0.14	0.14	
Window	V	V/(m²K)	1.3	1.2	1.2	1.2	0.7	0.7	
Door	V	V/(m²K)	3.0	1.8	1.8	1.2	1.2	1.2	
Floor	V	V/(m²K)	0.15	0.15	0.18	0.16	0.14	0.14	
Thermal bridging supplement (whole envelope)		W/(m²K)	0.08	0.04	0.08	0.04	0.08	0.04	
Heat Supply System	m								
Heat generator			Heat Pump	Heat Pump	Gas Boiler	Gas Boiler	Gas Boiler	Gas Boiler	
Specification / Supplemental system		-	-	Gas heater	Gas heater	Stove	Stove		
Ventilation system		Natural	MVHR	DCMEV	MVHR	MVHR	MVHR		
Thermal solar syst	em	I	-	-	DHW	DHW	-	-	
Further system			PV	PV	PV	PV	PV	PV	

Table 112: Exemplary single-family house (SFH) – definition of variants

TABULA

OPE

A two-page display sheet for the single family house (SFH) shown in Figure 49 is included in the new 2014 version of the Irish Building Typology brochure [Energy Action 2014].

The display sheets for new buildings are set out differently than those for existing buildings in that they indicate the technical features associated with the three variants meeting the 2011 and NZEB standards. The variants represent indicative design approaches on how to comply with the standards as, of course, many alternative design combinations and options can be also be adopted.

TABULA 32. D	The state of the s	tiants for 2011 & NZE House Description 2013 Building Regulation (TEOL U 2013 Building Regulation (TEOL U 2014 Description (TEOL U better than the 2006 stability of an adfinide reference dwell- The next proposed revision in swill set treland's energy parform- level 2 70% better than the 2005 standard, thus becoming teavity zero fenergy Building 1) standard as required for all EU detached house analysed below to tail floor area of 229m ² . statistical contribution Medium - 40%	EB (2016)	Ar Saurce Heat Pump An ASMP abords low tempera triom the cutide air, compress delivers Rat a higher tempera temperature and the second state of the water. The technology is similar and the piece on the back of a rai ar conditionit and the piece on the back of a rai ar a conditionit and the piece on the back of a rai ar a conditionit and the piece on the back of a rai ar a conditionit and the piece on the back of a rai ar a conditionit and the piece on the back of a rai ar a conditionit and the piece on the back of a rai ar a conditionit and the piece on the back of a rai on the piece of a solution of a raised raise of a raise of the piece of the piece of the temperature of the piece of the piece of the piece of the piece of the temperature of the piece of the temperature of the piece	ture has less it and readings, nestic hot guine, luis burned, h abuc 8% use of hot guine, luis to chat guine, luis to chat guine, luis to chat guine, luis to chat guine, luis to chat diagna whick the guine, luis to chat habuc 8% use of hot so chat guine, luis to chat diagna whick the guine, luis to chat habuc 8% use of hot so chat habuc 8% use of hot habuc 8% use of h	ent building I ew oil or gas tickency of 30 on ing boilers. V hydrogen lin his water vag 6 of the total pour produc hased back int t to be recla	sing boller regulations require bollers have a mini- ka and thus must be bollers have an initiation of the source of statem contains our of statem contains our of statem contains out	Building: tight in o quently: opening tion, the then lost summer fresh air ers heat pre-heat ergy in t	Recovery Ventilation (HRV) are intentionally made more air- rider to reduce heat loss. Conse (here y are less well ventilated. While a winding hear period humidhy in the winding hear the second winding hear period humidhy in the winding hear the second winding hear the second in the second humidhy in the winding hear the second from the exhaust and uses it to the hear the second hear the hear the second hear the second hear the second hear the second hear the hear the second hear the hear the second hear the hear the second hear the second hear the hear the second hear the hear the second hear the hear the second hear thear the hear t
	as primary heating fuel				Nearly Ze	io Lifeig	Renewable contrib		
Floor U-value	0.15 W/m ² K	0.18 W/m ² K	0.14 W/m ² K	Variables	High – 59%, with el	octricity	Medium - 31%		Low - 23%
Wall U-value	0.21 W/m ² K	0.18 W/m ² K	0.14 W/m ² K		as primary heatin		Weddull - 517		LUW - 2570
Roof U-value	0.16 W/m ² K	0.13 W/m ² K	0.10 W/m ² K	Floor U-value	0.15 W/m ² K	-	0.16 W/m ² K		0.14 W/m ² K
Window U-value	1.3 W/m ² K	1.2 W/m ² K	0.7 W/m ² K	Wall U-value	0.18 W/m ² K	:	0.16 W/m ² K		0.14 W/m ² K
Door U-value	3.0 W/m ² K	1.8 W/m ² K	1.2 W/m ² K	Roof U-value	0.13 W/m ² K	:	0.10 W/m ² K		0.10 W/m ² K
Thermal Bridging Factor	0.08	0.08	0.08	Window U-value	1.2 W/m ² K		1.2 W/m ² K		0.7 W/m ² K
Air Permeability	5m ³ /hr/m ² @50Pa	5m ³ /hr/m ² @50Pa	2m ³ /hr/m ² @50Pa	Door U-value	1.8 W/m ² K		1.2 W/m ² K		1.2 W/m ² K
Primary Heating	Heat Pump - 386%	Gas boiler - 90%	Gas boiler - 90%	Thermal Bridging Factor	0.04		0.04		0.04
Secondary Heating	None	Gas heater	Wood pellet stove	Air Permeability	3m ³ /hr/m ² @50	OPa	2m ³ /hr/m ² @508	Pa	2m ³ /hr/m ² @50Pa
Heat Emitters	Under floor heating	Radiators	Radiators	Primary Heating	Heat pump - 38	86%	Gas boiler - 909	6	Gas boiler - 90%
Heating Controls	Time & temperature zone	Time & temperature zone con-	Time & temperature zone control	Secondary Heating	None		Gas fire		Wood pellet stove
Manatilatian Chartern	control Natural with 5 extract	trol DCMEV (SFP: 0.46)		Heat Emitters	Under floor hea	ting	Radiators		Radiators
Ventilation Strategy Hot Water	Heat pump & immersion Cylinder: 210 litres	Gas boiler + solar thermal. Cyl- inder: 300 litres	MVHR (SFP: 0.67, 92%) Gas boiler Cylinder: 150 litres	Heating Controls	Time & temperatur control	re zone	Time & temperature control	zone	Time & temperature zone control
Renewable Energy	Heat pump + 6 PV panels	Solar thermal + 6 PV panels	4 PV panels	Ventilation Strategy	MVHR (SFP: 0.67,	92%)	MVHR (SFP: 0.67, 9	92%)	MVHR (SFP: 0.67, 92%)
	Resi	ults		Hot Water	Heat pump & imm Cylinder: 210 lit		Gas boiler + solar the Cylinder: 300 litr		Gas boiler. Cylinder: 150 litres
Primary Energy	53.56 kWh/m²/y	56.21 kWh/m²/y	47.86 kWh/m²/y	Renewable Energy	Heat pump + 8 PV	panels	Solar thermal + 2 PV	panels	4 PV Panels
CO ₂ Emissions	12.13 kgCO ₂ /m ² /y	10.54 kgCO ₂ /m ² /y	8.91 kgCO ₂ /m ² /y			Re	sults		
EPC / CPC	0.374 / 0.398	0.392 / 0.346	0.334 / 0.292	Primary Energy	38.62 kWh/m ²	²/y	41.32 kWh/m ² /	y	41.85 kWh/m²/y
Rating	A3	A3	A2	CO ₂ Emissions	8.75 kgCO ₂ /m	²/y	8.24 kgCO ₂ /m ² /	ý	7.93 kgCO2/m2/y
		n options. Of course, building design		EPC / CPC	0.269 / 0.287		0.288 / 0.270		0.292 / 0.260
		mbinations of heating systems, rene Ilations and the proposed NZEB stan		Rating	A2		A2		A2
	Co-kanded b Programme	y the Intelligent Energy Europe of the European Union	80		- C.,	Co-funded i Programme	by the Intelligent Energy Europe of the European Union		81

Figure 49: "Building Display Sheet" of the exemplary SFH <IE> [Energy Action 2014]

In Table 113, results of the national energy balance calculation using the DEAP method are displayed for the single family house.

Variant Nº		001	003	014	012	001	000	
Variant N°		001	003	011	013	021	023	
Label of the variant triplet		High Re	newables	Medium R	enewables	Low Renewables		
Variation level		Minimum Requirement	Ambitious Standard / NZEB	Minimum Requirement	Ambitious Standard / NZEB	Minimum Requirement	Ambitious Standard / NZEB	
Method			Dwelling Ene	ergy Assessme	nt Procedure (D	DEAP v 3.2.1)		
National reference area**	m²	229	229	229	229	229	229	
Thermal transfer coeffi- cient by transmission. related to envelope area	W/(m²K)	0.581	0.367	0.542	0.349	0.365	0.312	
Relation to requirement		NA	NA	NA	NA	NA	NA	
Energy need for heating	kWh/(m²a)	36	11.74	30.79	9.52	11.07	6.34	
Delivered energy								
Fossil fuels	kWh/(m²a)	0	0	47.53	24.21	33.32	28.59	
Renewable fuels	kWh/(m²a)	26.79	22.93	22.56	12.84	10.52	10.05	
Electricity	kWh/(m²a)	27.46	23.24	7.20	7.51	7.52	7.52	
Auxiliary energy	kWh/(m²a)	0.56	2.63	2.51	2.83	2.83	2.83	
Primary energy demand	kWh/(m²a)	53.56	38.62	56.21	40.52	47.86	41.85	
Relation to requirement		93 %	67 %	98 %	71 %	84 %	73 %	

*) internal dimensioned area as defined in DEAP method

TABULA calculation results for all exemplary buildings

Table 114 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings. For the terraced house (TH), the variant numbers reflect the actual systems selected in TABULA.xlsm.

Table 114: Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)							
ßı	Ŝ	e e		a) a)			

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_ou kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oi kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_e l kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_e l kWh/(m²a)
	01	Minimum Requirement	0.98	65	0	65	59	12	19	0	0	0	0	28	0	0	-6
SFH	03	Ambitious Standard / NZEB	0.76	41	22	19	15	12	19	0	0	0	0	18	0	0	-7
	11	Minimum Requirement	0.91	61	0	61	56	12	18	73	0	0	0	2	0	0	-6
	13	Ambitious Stan- dard / NZEB	0.71	38	22	16	13	12	18	24	0	0	0	3	0	0	-2
	21	Minimum Requirement	0.72	38	22	17	13	12	18	33	0	0	2	3	0	0	-4
	23	Ambitious Standard / NZEB	0.59	31	20	11	7	12	18	18	0	0	0	3	0	0	-2
	31	Minimum Requirement	0.93	62	0	62	54	12	22	0	0	0	0	29	0	0	-7
тн	33	Ambitious Standard / NZEB	0.71	39	21	18	12	12	22	0	0	0	2	20	0	0	-11
	41	Minimum Requirement	0.85	58	29	29	23	12	22	50	0	0	0	4	0	0	-7
	43	Ambitious Standard / NZEB	0.67	36	0	36	28	12	22	55	0	0	0	3	0	0	-11
	51	Minimum Requirement	0.55	29	0	29	21	12	22	33	0	0	3	3	0	0	0
	53	Ambitious Standard / NZEB	0.55	29	18	11	6	12	22	18	0	0	0	4	0	0	0
	01	Minimum Requirement	0.38	22	0	22	11	12	26	0	0	0	0	22	0	0	-27
MFH	03	Ambitious Standard / NZEB	0.22	9	6	3	0	12	26	0	0	0	0	21	0	0	-54
	11	Minimum Requirement	0.38	22	0	22	11	12	26	41	0	0	0	3	0	0	-27
	13	Ambitious Standard / NZEB	0.22	9	6	3	1	12	26	31	0	0	0	4	0	0	-54
Explanation of C h_Transmission q_h_nd q_ve_rec_h_usable		ties (TABULA Data W/(m²K) floor area kWh/(m²a) energy ne kWh/(m²a) usable con	related he ed for hea ntribution	ating of ventila	ition hea	at recove	ery		dicator f	or energ	y quality	of build	ling enve	elope (cc	mpactne	ess + ins	ulation)
q_h_nd_net q_g_h_out		kWh/(m ² a) net energy kWh/(m ² a) generated							sses + 0	distributi	on losse:	5)					
q_w_nd		kWh/(m ² a) net energy	/ need do	mestic h	ot water												
q_g_w_out q_del_sum_gas,c coal,bio,, dh,other,	l_sum_gas,oil, pal,bio,, _el, kWh/(m²a) sum deliv										t heating	, other e	energy c	arriers			
q_exp_sum_el		kWh/(m ² a) sum produ	uced elect	ricity (ne	gative v	alue)											

3.12.3 Sources / References Ireland

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[DEAP 3.2.1]	Dwelling Energy Assessment Procedure (DEAP) version 3.2.1; Sustainable Energy Authority of Ireland <u>http://www.seai.ie/Your_Building/BER/BER_Assesso</u> <u>rs/Technical/DEAP/DEAP_2009/DEAP_Manual.pdf</u>	Irish EPC calculation method
[DECLG 2012]	Department of Environment, Community and Local Government: Towards Nearly Zero Energy Buildings in Ireland, Planning for 2020 and Beyond, November 2012	Irish Government's Nearly Zero Energy Building Plan
[Energy Action 1999]	Energy Action, Energy Research Group & Environ- mental Institute, University College Dublin; Homes for the 21st Century – the Costs & Benefits of Com- fortable Housing for Ireland: 1999 http://erg.ucd.ie/UCDERG/pdfs/H21stC_full.pdf	Financial, environmental and health benefits study from refurbishment of the Irish housing stock
[Energy Action 2012]	Hanratty, Michael; Sheldrick, Bill; Badurek, Marcin; Building Typology Ireland; Energy Action May 2012 http://episcope.eu/fileadmin/tabula/public/docs/broch ure_until2012/IE_TABULA_TypologyBrochure_Energ yAction_2012.pdf	Irish TABULA brochure 2012
[Energy Action 2014]	Hanratty, Michael; Sheldrick, Bill; Badurek, Marcin; Building Typology Ireland; Energy Action May 2014 http://episcope.eu/fileadmin/tabula/public/docs/broch ure/IE_TABULA_TypologyBrochure_EnergyAction.p df	Irish TABULA brochure 2014
[SEAI s.a.]	SEAI Energy Policy Statistical Support Unit (EPSSU): Statistics Publications <u>http://www.seai.ie/Publications/Statistics_Publication</u> <u>s/</u>	Publications on energy balance statistics
[SEAI 2013]	Sustainable Energy Authority of Ireland (SEAI): Derivation of Primary Energy and CO ₂ Factors for Electricity in DEAP, 2013 <u>http://www.seai.ie/Your_Building/BER/BER_FAQ/FA</u> Q_DEAP/DEAP_elec_factors_FAQ_Q42013.pdf	Derivation of Primary Energy and CO_2 Factors for Electricity in DEAP
[SEAI 2014]	Sustainable Energy Authority of Ireland (SEAI): BER Assessors – Dwellings Technical Bulletin, February 2014 http://www.seai.ie/Your Building/BER/Technical Bull etins/Technical-Bulletin-February-2014.pdf	BER Assessors – Dwellings Technical Bulletin
[TGD Part L 2005]	Building Regulations 2005, Technical Guidance Document L, Conservation of Fuel and Energy – Dwellings; Department of Environment Community and Local Government <u>http://www.environ.ie/en/Publications/Developmentan</u> <u>dHous-</u> ing/BuildingStandards/FileDownLoad, 1652, en.pdf	Energy performance guidance document for Irish Building Regulations 2005
[TGD Part L 2011]	Building Regulations 2011, Technical Guidance Document L, Conservation of Fuel and Energy – Dwellings; Department of Environment Community and Local Government <u>http://www.environ.ie/en/Publications/Developmentan</u> <u>dHous-</u> ing/BuildingStandards/FileDownLoad,27316,en.pdf	Energy performance guidance document for Irish Building Regulations 2011
[Watson/James 2002]	Watson, Dorothy; Williams, James; The Irish National Survey of Housing Quality 2001-2002; ESRI, Ireland 2002 <u>http://www.environ.ie/en/Publications/Developmentan</u> <u>dHousing/Housing/FileDownLoad,2447,en.pdf</u>	Survey of Irish housing stock based on sample of 40,000 householders

Table 9: Sources / References Ireland

3.13 <IT> Italy

(by EPISCOPE partner POLITO)

The Italian building typology is quite heterogeneous: the most frequent building type is a small size building; the single-family house and the small multi-storey buildings represent nearly 50 % of the entire national residential building stock. As regards the structural materials, 61.5 % of the residential buildings are made of load-bearing masonry walls, 24.7 % of reinforced concrete and 13.8 % of other materials such as wood, steel or mixed structure. More than 50 % of residential buildings are separate from other buildings, whereas the rest are adjacent to other structures on one or more sides [ISTAT 2001].

Approximately 20 % of the Italian residential built stock was constructed before 1919. The period between the two World Wars saw a decline in building activity and accounts for only 12 % of the current residential buildings. On the other hand, the period from the end of World War II to the early 1980s recorded a strong increase in building activity, producing around 50 % of the actual built stock. Lastly, from the early 1980s to the present time, building activity shrank again. As more than 70 % of the Italian residential buildings were built before the emanation of the first national law on building energy efficiency (1976) [ISTAT 2001], the potential of energy saving that can be reached by retrofitting the building thermal envelope and the technical systems can be very high.

The recent Italian National Energy Strategy (NES) from Ministry of Economic Development was published in March 2013 [NES 2013] and sets out four targets for the medium-long term (2020): (a) to align the cost of energy with the EU average, (b) to exceed the environmental carbon reduction targets established by the EU Climate-Energy package for 2020, (c) to increase the energy supply assurance and (d) to boost a sustainable economic growth through the development of the energy sector. The strategy for achieving these targets comprises seven priorities, each with specific supporting measures, either already launched or being finalised. The first priority identified by the NES is the energy efficiency. In particular, the NES has identified a high energy saving potential in the building sector: the final energy consumption reduction target for the residential and services sectors laid down in the NES is respectively 3.8 Mtoe and 2 Mtoe.

In Italy, the Legislative Decree No 192/2005 [D. Lgs. 192/2005] and its addictions and amendments [D. Lgs. 311/2006], which transposed the 2002/91/EC Directive [EPBD 2002], were recently amended by the Decree Law No 63/2013, in order to adopt the new provisions introduced by the 2010/31/EU Directive [EPBD recast 2010] at a national level. Decree Law No 63/2013, converted into the Law No 90/2013 [L. 90/2013], lays the groundwork and sets new criteria for updating and programming energy performance requirements of buildings (on thermal envelope, technical systems and technologies using renewable energy sources). As far as the new buildings are concerned, the recent Italian legislation is projected towards the achievement of the EU targets about the "nearly zero-energy buildings" (NZEBs).

In the forthcoming application decrees of the Law No 90/2013, the minimum energy performance requirements of buildings will take into account both, the heating and the cooling seasons, the different Italian climatic zones and the other performance standards established by the regulatory framework. This will require the development of calculation methods and the use of tools, such as the "comparative methodology" which will be applied to determine the optimal energy performance requirements that lead to the lowest cost during the estimated economic lifecycle of the building (according to the objectives of the 2010/31/EU Directive).

The "cost-optimal methodology" will be also applied for the definition of the "nearly zeroenergy building". Anyway at the present moment, the Italian NZEB has not been officially defined yet. Some Italian regions, for instance Piedmont Region [Reg. Piemonte 2011], are currently promoting initiatives targeting nearly zero-energy buildings, by means of dedicated regional calls and efficient building construction initiatives in the social housing and nonresidential sectors.

The Italian legislation on the building energy efficiency in force now is the Legislative Decree No 192/2005 (*D. Lgs. 192/2005*) and its subsequent amendments and application decrees. The *D. Lgs. 192/2005*, which transposes the 2002/91/EC Directive (EPBD), has been recently amended by the Law No 90/2013, which transposes the 2010/31/EU Directive (EPBD recast). The application decrees of *D. Lgs. 192/2005* will be soon replaced by the forthcoming decrees applying the Law No 90/2013. These decrees will update the current legal requirements of new residential buildings and will fix an official NZEB standard.

Minimum requirements for new residential buildings in Italy

The Italian *D. Lgs. 192/2005* and its application decree No 59/2009 [D.P.R. 59/2009] provide the minimum energy performance requirements for new buildings.

An allowable maximum value of annual primary energy need for space heating is fixed for different building uses, climatic zones and compactness ratios. In addition, an allowable maximum value of annual net energy need for space cooling is fixed for different building uses and climatic zones.

Moreover, values of the thermal transmittance of different building envelope components, values of the heat generator efficiency and of the global thermal system efficiency are provided by the same decrees²⁷.

As concerns renewable energy sources, Legislative Decree No 28/2011 [D. Lgs. 28/2011] requires their integration in new buildings, by establishing the coverage of a fixed percentage of energy need for space heating, space cooling and domestic hot water by means of a thermal solar plant, and the installation of a photovoltaic system whose electric power varies according to the building size.

Italian calculation method to comply with new building regulations for residential buildings

The Italian decree 26/06/2009 on "National guidelines for the building energy certification" [D.M. 26/06/2009], applying the Legislative Decree No 192/2005, specifies that the official national calculation method for the EPC is that provided by the technical specifications of the UNI/TS 11300 series. The same calculation method is applied to verify compliance with the new building energy performance requirements. The UNI/TS 11300 is made of four parts, as follows:

- UNI/TS 11300-1: Energy performance of buildings. Evaluation of energy need for space heating and cooling (2008, under revision) [UNI/TS 11300-1].
- UNI/TS 11300-2: Energy performance of buildings. Evaluation of primary energy need and of system efficiencies for space heating and domestic hot water production (2008, under revision) [UNI/TS 11300-2].
- UNI/TS 11300-3: Energy performance of buildings. Evaluation of primary energy and system efficiencies for space cooling (2010, under revision) [UNI/TS 11300-3].
- UNI/TS 11300-4: Energy performance of buildings. Renewable energy and other generation systems for space heating and domestic hot water production (2012) [UNI/TS 11300-4].

The part 1 of the technical specification UNI/TS 11300 is the national application of the European technical standard EN ISO 13790, which is based on the quasi steady-state calculation

²⁷ The thermal transmittance values of the building envelope components can be verified instead of the primary energy values for space heating in case of buildings having the ratio between the transparent envelope surface and the conditioned floor area below 0.18.

method. This calculation method considers the monthly balance of the heat losses (transmission and ventilation) and the heat gains (solar and internal) evaluated in monthly average conditions. The dynamic effects on the net heating and cooling energy needs are taken into account by introducing a dynamic parameter named the "utilization factor", which considers the mismatch between transmission plus ventilation heat losses and solar plus internal heat gains leading to heating/cooling loads.

The parts 2, 3 and 4 of the UNI/TS 11300 provide a calculation method based on national boundary conditions and input data, although they apply the general calculation framework presented in the European technical standard EN 15316 series.

The primary energy factors to be used for EPC issuing are provided by the technical document No 14/2013 from the Italian Thermotechnical Committee (CTI) [CTI 2013].

Status of NZEB definition for residential buildings in Italy

The forthcoming decrees, which will apply the national Law No 90/2013, will set up an official definition and will provide the energy performance requirements of the Italian NZEB. In the meantime, a national plan for increasing the number of nearly zero-energy buildings in Italy has been elaborated by ECOFYS in 2013 [ECOFYS 2013].

According to this plan, the current minimum energy parameter values and thermal characteristics will become more demanding from 2016 forward. They will be based on the benchmark values of certain parameters set for a reference building; the current limits and those soon to be set will be in line with the results of the "cost-optimal methodology". It will be possible to establish primary energy consumption stated in kWh/m² per year, differentiated by building type, location and use. The transmittance values required for building elements will be lowered by 15 % compared to their current value from 1st January 2016 and by another 15 % from 1st January 2021. A similar improvement will be applied to the minimum energy performance requirements for space heating and conditioning systems. For public buildings, in line with current national legislation, the minimum requirements will be made 10 % more demanding. Moreover, verification of the requirements for nearly zero-energy buildings will be applied starting from 2018.

For all new buildings and buildings undergoing major refurbishments, the legislation currently being drafted provides for gradually increasing shares of energy from renewable sources (i.e. gradual reduction of the $\text{EP}_{nren}/\text{EP}_{tot}$ ratio). The reduction shall be carried out in different stages (e.g. from 2015, from 2017, from 2019, from 2021) and the requirement will be differentiated according to climatic zone. The forthcoming legislation will also provide for verification of compliance with the following minimum parameters and indices:

- the H_T parameter, i.e. the average transmission heat transfer coefficient, according to climatic zone and building type;
- the A_{sol,est}/A_{sup} parameter, i.e. the ratio of the buildings' summer solar radiation surface to useful surface area in relation to the summer climate zone;
- the *EP*_{H,nd} and the *EP*_{C,nd} indices, i.e. the demand of useful thermal energy for space heating and cooling;
- *EP*_{tot} (total primary energy) for space heating, space cooling, domestic hot water, ventilation;
- *EP*_{nren} (non-renewable primary energy), i.e. progressively increasing shares of total energy which must be met using renewable sources.

At the present time there is no official definition of NZEB. However, according to the ECOFYS plan, it is believed that on the basis of the current share of 1.6 % of new buildings, 20 % of them can be ranked as NZEB, if the requirements described above are confirmed.

The definition of "nearly zero-energy building" will be applied to buildings meeting specific technical requirements and using a specific share of energy from renewable sources. Either of the following indices: energy performance for space heating (EP_H), energy performance for

space cooling, including humidity control ($EP_{\rm C}$), or global energy performance, expressed in non-renewable primary energy ($EP_{\rm tor}$), or again global energy performance expressed in total primary energy ($EP_{\rm tor}$), must be lower by a certain value than the values of the same indices calculated for a reference building (e.g. as an indication, the global energy performance index expressed in non-renewable primary energy must be 30-35 % lower than the value of the reference building in 2020). The reference building is a virtual building geometrically equivalent to the planned one, but meeting the minimum energy performance parameters (e.g. thermal transmittance of the envelope components) to be achieved by the year 2020. On the basis of this criterion and of the minimum energy performance requirements which, for the year 2020, will be validated on the basis of the results of the cost-optimal method, it will also be possible to establish a range for primary energy consumption expressed in kWh/m² per year, differing according to building type, location and use [ECOFYS 2013].

Some overview features of the current calculation method for new residential buildings (building regulation requirements/EPC) compared to the (assumed) NZEB definition for residential buildings in Italy are shown in Table 115.

Table 115: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition for residential buildings in Italy

			С	alculation	Metho	d New	Building R	egulation	s – (part 1)				
Cour	ntry	IT	Ita	ly					Status	06/2014			
Natic	onal Re	quirer	Special Aspects with regard to the (assumed) National NZEB Definitio										
Legislation / Standards									Legislation: L. 90/2013.				
Legisla	ation: D.	Lgs. 192	2/2005	5, D. Lgs. 311	/2006, D	P.R. 59/2	2009			n NZEB definition until			
Techn	ical stand	dards: Ul	NI/TS	5 11300-1/2/3/	4				now.				
Explai	nation /	Commei	nts										
siderin	ng three o	lifferent t	time s		ation lev	el (from 2	troduced in 20 2006, from 200 2010 values.						
Ener	gy Ser	vices							The same energy	gy services will be			
x													
x													
x													
Expla	nation /	Commei	nts										
energy net en ment f	/ need fo ergy nee or new b	r space of for spa uildings.	coolir ace co	ng instead of t poling is also a	he prima	ry energy	akes into acco / for the same / performance	use. The					
Calc	ulation	Proce	dur	e		Cal	culation period	I		standards will be new CEN standards			
x	Calcula (buildir		energ	y need for hea	ating		Month			cording to Mandate			
X	Calcula	ation of c	delive	red energy (sy	ystem)		Year / Mo	nth					
Explai	nation /	Commei	nts										
Cons	siderati	ion of	Spe	cial Techn	ologie	5			Probably no cha	anges will occur.			
Therm	al Syster	ns											
x	Ventila	tion syste	em w	ith heat recov	ery								
x	Therma	al solar s	ysten	n									
	Other s	pecial sy	ystem	IS:									
On-Sit	Dn-Site Electricity Production Feed-in Self-use ¹ to determine consider							Self-use considered for H-C-W-HE ¹					
х	x On-site CHP x -							-					
x	C On-site PV X Month H-C-W							H-C-W					
	Other energy generation systems:												
							covered by the pro Household Electric						
Photov the pro	oduced e	currently lectricity	/ inclu v on-s		lculated	monthly	rovisions are ta electrical ener						

Table 115 (continuation)

			Calculation	Metho	od New B	Building Regulation	is – (part 2)				
Cour	ntry	IT	Italy				Status	06/2014			
Natio	onal Re	quiren	nents for New	Special Aspects with regard to the (assumed) National NZEB Definition							
Туре	of Red	quirem	ents (new buil	Probably in addition, th legislation will provide f							
x		ansfer co	ding elements befficient by	x	Primary energy	Total and non- renewable	compliance with the fol ters: - the average transmis	lowing parame- sion heat trans-			
	Energy	need for	heating		Carbon di	ioxide emissions	bxide emissions fer coefficient, H _T (W/k - the ratio of the building				
	Deliver	ed energ	У	x	Other	Thermal system efficiency	solar radiation surface to useful surface area $(A_{sol,est}/A_{sup})$;				
Expla	nation / (Commer	nts				 the demand of useful for space heating and and EP_{C,nd}); the primary energy for space cooling, dome- ventilation (EP_{tot} and 	I thermal energy d cooling (EP _{H,nd} or space heating, stic hot water,			

Assessment of energy carriers in Italy

The current national reference document for the assessment of the energy carrier is the technical report No 14/2013 from the Italian Thermotechnical Committee (CTI) [CTI 2013]. This document will be replaced by a new corresponding technical standard, aligned with the new CEN standards being set up according to Mandate 480-2010.

According to the Italian Thermotechnical Committee report, the building energy needs can be covered by means of:

- renewable energy produced "on site",
- both non-renewable and renewable delivered energy from energy carries "off site".

The delivered energy from energy carriers can be either non-renewable energy or renewable energy, according to the related conversion coefficients into primary energy of the different energy carriers.

In general, the monthly electrical energy needs can be covered by means of electrical energy produced by renewable sources "on site" or cogeneration using non-renewable or renewable energy carriers, up to lead to zero the electricity imported from the grid. On monthly basis, the gross delivered electricity is calculated as the difference between the electricity demand and the used electricity produced by renewable sources. If the production exceeds the demand:

- the surplus is calculated on annual basis,
- the annual re-imported electricity is the minimum value between the annual gross delivered electricity and the annual surplus,
- the annual exported electricity is calculated as the positive difference between the annual surplus and the annual re-imported electricity.

Waiting for a new legislative disposition, the CTI report No 14/2013 specifies that the annual re-imported electricity is equal to zero. As far as the exported electricity is concerned, the conversion coefficient is equal to zero if the electricity is produced by a photovoltaic system, while the conversion coefficient is equal to that of the electricity imported from the grid in case of cogeneration.

The Italian primary energy factors are listed in Table 116. The current national values for EPC do not take into account the heat losses due to extraction, processing, storage, transportation or transformation of the energy carrier.

Table 116: Italian primary energy factors

Label / type of factor	Total Primary Energy factor EPC standard Italy	Non-Renewable Primary Energy factor EPC standard Italy
used for EPC rating	x	х
used for building regulations requirements	Х	x
Label (national language)	Fattori di energia primaria totale	Fattori di energia primaria non rinnovabile
Description / type of weighting factor	Non-renewable + renewable energy amounts (extraction, processing, storage, transporta- tion or transformation excluded)	Non-renewable energy amounts (extraction, processing, storage, transportation or trans- formation excluded)
Factor is multiplied by deliv- ered energy based on the	net calorific value (H _i)	net calorific value (H _i)
Reference	[CTI 2013]	[CTI 2013]
Natural gas	1	1
Heating oil	1	1
Hard coal	1	1
Lignite	1	1
Firewood	1	0.3
Wood pellets	1	0.3
Electricity	2.174	2.174
Electricity production CHP	2.174	2.174
Electricity production PV system	2.174 *	2.174 *
District heating	_ **	_ **
District heating without CHP	_ **	_ **
District heating with 100 % CHP	_ **	_ **
*) Only for calf yes		

*) Only for self-use.

**) Provided by the district heating supplier.

Methodological points for discussion in Italy

As regards the assessment of energy carriers and the weight to be attributed to the energy produced by renewable energy sources, the following issues are being discussed:

- a) the definition of the "boundary" of the building;
- b) the distinction between "on site" renewable energy sources and "off site" renewable energy sources;
- c) the balance of the electricity needs of the building through the electricity produced from renewable energy sources;
- d) the value of the electricity produced by renewable energy sources and exported;
- e) the primary energy conversion factors of different energy carriers.

These aspects will be clarified in the new legislative dispositions and national technical standards, respectively complying with the EPBD recast and the CEN Mandate 480-2010.

An overview of the related concepts is shown in Figure 50.

Figure 50: Assessment boundary and geographical perimeters (http://arc.housing.salle.url.edu/semanco/kms/index.php/Energy_and_Related_Terms)

3.13.2 Integration of National Requirements for New Buildings and NZEB Standards in the Italian Residential Building Typology

The "building typology" classification is a concept already used in Italy both at national and at regional level. However some problems exist, such as lack of a shared definition on building typology, unknown or not updated building typologies, difficulty in understanding the concept of "building typology" that makes this classification not used. These difficulties were overcome in the TABULA project, during which the Italian Residential Building Typology was defined and was developed with reference to the Italian "Middle Climatic Zone", which includes more than 50 % of the Italian municipalities²⁸.

The Italian Residential Building Typology includes eight construction age classes, each representing a precise historical period that mirrors significant geometrical and construction typologies from the energy point of view. Each construction age class is then represented by four building size classes. According to the TABULA common principles, the building size classes include "single-family house", "terraced house", "multi-family house" and "apartment block" [POLITO 2012].

Classification scheme for the Italian residential building stock ("Building Type Matrix")

The elements that allow to classify the building typology compose the axes of the so-called "Building Type Matrix". Each climatic zone is characterized by a matrix and each matrix consists of rows, representing the building age classes, and columns, representing the building size classes. Each cell in the matrix is filled with a "building-type", i.e. a building that is considered representative of that specific condition (climatic zone / construction age / building size).

The Italian "Building Type Matrix" has been developed for the "Middle Climatic Zone" and it is shown in Figure 51. The new buildings, reflecting the current legal requirements, are represented by the building types of the eighth building age class (after 2005). These buildings have been already identified in the TABULA project. Now in the EPISCOPE project, these example buildings (see Table 117) are used for showcase calculations reflecting possible practical implementations of new buildings from minimum energy performance requirements, to improved energy performance levels, to NZEB standards [POLITO 2014].

²⁸ The Italian "Middle Climatic Zone" represents the Italian municipalities that have a number of heating degree days ranging from 2100 to 3000.

	Region	Construction	Additional	SFH	ТН	MFH	AB
		Year Class	Classification	Single-Family House	Terraced House	Multi-Family House	Apartment Block
1	Middle Climatic Zone (Zona climatica media - ZONA E)	1900	generic	IT.MidClim.SFH.01.Gen	IT.MidCim.TH.01.Gen	IT. MidClim.MFH.01.Cen	IT.MidClim.AB.01.Gen
2	Middle Climatic Zone (Zona climatica media - ZONA E)	1901 1920	generic	IT.MidCilm.SFH.02.Gen	IT.MidClim.TH.02.Gen	IT .MidClim .MFH.02.Gen	IT.MidClim.AB.02.Gen
3	Middle Climatic Zone (Zona climatica media - ZONA E)	1921 1945	generic	IT.MidClim.SFH.03.Gen	IT.MdClm.TH.03.Gen	IT.MIdClim.MFH.03.Gen	IT.MidClim.AB.03.Gen
4	Middle Climatic Zone (Zona climatica media - ZONA E)	1946 1960	generic	IT.MidClim.SFH.04.Gen	IT.MidCim.TH.04.Gen	IT .MidClim.MFH.04.Gen	IT.MidClim.AB.04.Gen
5	Middle Climatic Zone (Zona climatica media - ZONA E)	1961 1975	generic	IT.MidClim.SFH.05.Gen	IT.MidC Im.TH.05.Gen	IT .MidClim.MFH.05.Gen	IT.MidClim.AB.05.Gen
6	Middle Climatic Zone (Zona climatica media - ZONA E)	1976 1990	generic	IT.MidCim.SFH.06.Gen	IT.MidCim.TH.06.Gen	T.MidClim.MFH.06.Gen	IT.MidClim.AB.06.Gen
7	Middle Climatic Zone (Zona climatica media - ZONA E)	1991 2005	generic	IT.MidCim.SFH.07.Gen	IT.MdClim.TH.07.Gen	IT .MidClim.MFH.07.Gen	IT.MidClim.AB.07.Gen
8	Middle Climatic Zone (Zona climatica media - ZONA E)	2006	generic	T. MidCilm.SFH.08.Gen	IT.MidClim.TH.08.Gen	IT .MidClim.MFH.08.Gen	IT.MidClim.AB.08.Gen

Figure 51: Classification scheme ("Building Type Matrix") of the Italian residential building typology [POLITO 2014], now extended towards new buildings

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		IT.MidClim.SFH.08.Gen	IT.MidClim.TH.08.Gen	IT.MidClim.MFH.08.Gen	IT.MidClim.AB.08.Get
Number of dwellings		1	1	13	31
Number of full storeys (conditioned)		2	2	3	7
Number of directly attached neighbour buildings		0	1	0	0
National reference area (Conditioned net floor area based on internal dimensions)	m²	174	127	829	2124
TABULA reference area (conditioned floor area, inter- nal dimensions)*	m²	174	127	829	2124

Table 117: Exemplary new buildings representing the latest construction year classes (2006 ...)

*) Determined according to the convention established in [TABULA 2013].

Building example: variants meeting three energy performance levels for new buildings

Three different performance levels ("minimum requirement", "improved standard", "and advanced standard/NZEB") have been considered for new buildings, reflecting in different values of the thermal transmittance of the building envelope components and in different efficiency levels of the thermal systems. Each performance level is characterised by a single construction technology and by some alternative types of systems/heat generators, as described below.

1. "Minimum requirement"

The U-values of the building envelope components comply with the Legislative Decree No 192/2005. The efficiencies of the heat generators are the minimum allowable values established by the Decree No 59/2009 for standard low temperature gas boilers, biomass (wood pellets) boilers and electrical heat pumps. These three heat generator types have been considered as variants (001, 011, 021). A 50 % coverage of the energy need for DHW is guaranteed by the thermal solar system, according to Legislative Decree No 28/2011.

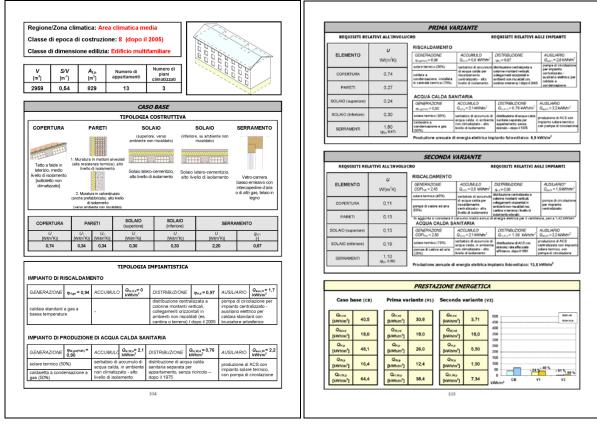
2. "Improved standard"

The U-values of the building envelope components comply with the Decree 26/01/2010 [D.M. 26/01/2010]. Even if this decree is applicable for the energy refurbishment of existing buildings, the thermal transmittance values have been taken as reference values for the "improved standard" of new buildings because they are lower than the values of the "minimum requirement" standard. The reference values of the heat generator efficiencies are provided by Decree 19/02/2007 [D.M. 19/02/2007] for gas condensing boiler, by Legislative Decree No 28/2011 for biomass (wood pellets) boiler and by Decree 06/08/2009 [D.M. 06/08/2009] for electric heat pump. These three heat generator types have been considered as variants (002, 012, 022). The thermal solar plant covers 30 % of the energy need for space heating and 50 % of the energy need for domestic hot water, in compliance with Legislative Decree No 28/2011. According to the same decree, the photovoltaic system has been considered both for the *single-unit housings* (1.4 kW_p) and for the *multi-unit housings* (5 kW_p).

3. "Advanced standard / NZEB"

As an official standard for NZEBs is still lacking, both the thermal transmittances and the thermal system efficiencies have been derived from projects of NZEBs from calls for funding in Piedmont Region [Reg. Piemonte 2011]. As the heat generators installed in these projects are only electrical heat pumps, two different variants have been considered, air source heat pump and ground source heat pump (003, 013). The thermal solar plant covers 45 % of the energy need for space heating and 75 % of the energy need for domestic hot water. In addition, the photovoltaic system has been considered both for the *single-unit housings* (3 kW_p) and for the *multi-unit housings* (10 kW_p). A ventilation system with heat recovery (80 % efficiency) has been applied to all the building types.

<IT> Italy


An example of variants considered for the new buildings is shown in Table 118 for the multifamily house. The related "Building display sheets", which are included in the "Building Typology Brochure" [POLITO 2014] are shown in Figure 52. The display sheets of all the new building types can be found in the same document [POLITO 2014].

IT.MidClim.M	FH.08.Gen		um requii values; thre variants)		•	roved stan values; thre variants)		Ambitious Standard / NZEB (Fixed U-values; two system variants)			
Variant N°		001	011	021	002	012	022	003 013			
Energy Perforr Level	nance	Minim	um Require	ement	Imp	proved Stand	lard	Ambitious Standard / NZEB			
U-values											
roof/ceiling**	W/(m²K)		0.30			0.24		0.	13		
wall	W/(m²K)		0.34			0.27		0.	13		
window	W/(m²K)		2.20			1.80		1.10			
door	W/(m²K)		-			-			-		
floor	W/(m²K)		0.33			0.30		0.	19		
thermal bridging supplement (whole enve- lope)) W/(m²K)		0.05			0.05		0.	00*		
Heat Supply S	ystem										
heat generator		low tempera- ture gas boiler	wood pellets boiler	electrical heat pump	gas condens- ing boiler	wood pellets boiler	electrical heat pump	electrical	heat pump		
specification / supplemental sy	ystem			air source			air source	air source	ground source		
ventilation sys	stem	absent	absent	absent	absent	absent	absent	heat recovery	heat recovery		
thermal solar	system	DHW	DHW	DHW	H+DHW	H+DHW	H+DHW	H+DHW	H+DHW		
Further system	า				PV	PV	PV	PV	PV		

Table 118: Exemplary multi-family house (MFH) - definition of variants

*) The thermal bridges are considered completely removed in the NZEB.

**) The reported values refer either to the roof if the attic space is conditioned or to the upper ceiling if the attic space is unconditioned (in this case the roof should have an U-value lower than 0.8 W/m²K).

OPE

Figure 52: "Building Display Sheet" of the exemplary MFH <IT> (further examples in [POLITO 2014])

In Table 119, the results of the national energy balance calculation (procedure according to UNI/TS 11300 series) are displayed for the multi-family house of the Italian "Building Type Matrix". The delivered and primary energy are referred to space heating. The delivered electricity and the auxiliary energy demand shown in Table 119 are calculated as the difference between the total electricity demand and the used electricity produced by the photovoltaic system, on monthly basis (according to the national method described above). The primary energy is referred to non-renewable energy sources.

Variant N°		001	011	021	002	012	022	003	013	
Label of the variant triplet		Minim	um Requi	rement	Impr	oved Star	ndard	Ambitious Standard / NZEB		
Variation level	low tempera- ture gas boiler	wood pellets boiler	air source electrical heat pump	gas condens- ing boiler	wood pellets boiler	air source electrical heat pump	air source electrical heat pump	ground source electrical heat pump		
Energy standard			2/2005; D.P.I D.Lgs. 28/201			/2010; D.M. (D.Lgs. 28/201	Exemplary projects of NZE (calls for funding - Piedmo Region)			
Method										
National reference area*	nal reference area* m ² 829 829				829	829	829	829	829	
Thermal transfer coeffi- cient by transmission. related to envelope area	W/(m²K)	0.418	0.418	0.418	0.340	0.340	0.340	0.171	0.171	
Energy need for heating	kWh/(m²a)	40.5	40.5	40.5	30.8	30.8	30.8	3.71	3.71	
Delivered energy										
Fossil fuels	kWh/(m²a)	44.4	0.0	0.0	23.3	0.0	0.0	0.0	0.0	
Renewable fuels	kWh/(m²a)	0.0	56.7	0.0	0.0	26.8	0.0	0.0	0.0	
Electricity	kWh/(m²a)	0.0	0.0	19.5	0.0	0.0	9.2	0.64	0.43	
Auxiliary energy	kWh/(m²a)	1.7	1.7	1.6	1.26	0.58	1.4	1.87	1.77	
Primary energy demand	kWh/(m²a)	48.1	20.7	45.8	26.0	9.30	23.0	5.50	4.77	

*) Conditioned net floor area based on internal dimensions.

**) The thermal transfer coefficient by transmission is not an energy performance requirement in the Italian legislation.

Table 120 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all the exemplary new buildings of the Italian "Building Type Matrix".

<IT> Italy

Building	Var. N°		Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other k\V\h/(m²a)	q_exp_sum_el kWh/(m²a)
	01	n ent	low temp. gas boiler	1.23	69	0	69	69	10	15	92	0	0	0	9.3	0	0	0
	11	Minimum Requirement	wood pellets boiler	1.23	69	0	69	70	10	15	0	0	0	131	7.8	0	0	0
SFH	21	Rec	air source el. heat pump	1.23	69	0	69	69	10	15	0	0	0	0	44	0	0	0
5111	02	77	gas condens- ing boiler	0.93	57	0	57	58	10	15	56	0	0	0	9.3	0	0	-20
	12	Improved Standard	wood pellets boiler	0.93	57	0	57	58	10	15	0	0	0	68	7.8	0	0	-20
IT.MidClim.SFH.08.Gen	22	St 1	air source el. heat pump	0.93	57	0	57	58	10	15	0	0	0	0	26	0	0	-20
	03	ous	air source el. heat pump	0.43	31	16	15	15	10	15	0	0	0	0	13	0	0	-20
	13	Ambitious Standard	ground source el. heat pump	0.43	31	16	15	15	10	15	0	0	0	0	12	0	0	-20
	01	ر ent	low temp. gas boiler	1.25	69	0	69	69	10	15	93	0	0	0	9.3	0	0	0
	11	Minimum Requirement	wood pellets boiler	1.25	69	0	69	71	10	15	0	0	0	132	7.8	0	0	0
тн	21	Red	air source el. heat pump	1.25	69	0	69	69	10	15	0	0	0	0	44	0	0	0
	02	סס	gas condens- ing boiler	0.95	57	0	57	58	10	15	56	0	0	0	9.3	0	0	-27
	12	Improved Standard	wood pellets boiler	0.95	57	0	57	58	10	15	0	0	0	68	7.8	0	0	-27
IT.MidClim.TH.08.Gen	22	Ē	air source el. heat pump	0.95	57	0	57	58	10	15	0	0	0	0	26	0	0	-27
	03	ous ard	air source el. heat pump	0.44	31	16	15	15	10	15	0	0	0	0	13	0	0	-27
	13	Ambitious Standard	ground source el. heat pump	0.44	31	16	15	15	10	15	0	0	0	0	12	0	0	-27
	01	n ent	low temp. gas boiler	0.98	60	0	60	61	15	18	84	0	0	0	4.8	0	0	0
	11	Minimum Requirement	wood pellets boiler	0.98	60	0	60	62	15	18	11	0	0	103	3.9	0	0	0
MFH	21	Reo	air source el. heat pump	0.98	60	0	60	61	15	20	0	0	0	0	36	0	0	0
	02	q g	gas condens- ing boiler	0.74	50	0	50	52	15	18	53	0	0	0	4.8	0	0	-16
	12	Improved Standard	wood pellets boiler	0.74	50	0	50	52	15	18	11	0	0	54	3.9	0	0	-16
IT.MidClim.MFH.08.Gen	22	Ξv	air source el. heat pump	0.74	50	0	50	52	15	20	0	0	0	0	25	0	0	-16
	03	ious lard	air source el. heat pump	0.36	26	16	10	11	15	19	0	0	0	0	9.4	0	0	-17
	13	Ambitious Standard	ground source el. heat pump	0.36	26	16	10	11	15	19	0	0	0	0	8.4	0	0	-17

Table 120:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

Table 120 (continuation)

Building	Var. N°		Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other k/\h/(m²a)	q_exp_sum_el kWh/(m²a)
	01	n ent	low temp. gas boiler	0.98	60	0	60	61	15	18	84	0	0	0	4.8	0	0	0
	11	Minimum Requirement	wood pellets boiler	0.98	60	0	60	62	15	18	11	0	0	103	3.9	0	0	0
AB	21	Z 98 Z 99 Z 99 Z 99 Z 99 Z 99 Z 99 Z 99	air source el. heat pump	0.98	60	0	60	61	15	20	0	0	0	0	36	0	0	0
AD	02	סס	gas condens- ing boiler	0.74	50	0	50	52	15	18	53	0	0	0	4.8	0	0	-16
	12	Improved Standard	wood pellets boiler	0.74	50	0	50	52	15	18	11	0	0	54	3.9	0	0	-16
IT.MidClim.MFH.08.Get	22		air source el. heat pump	0.74	50	0	50	52	15	20	0	0	0	0	25	0	0	-16
	03	ous ard	air source el. heat pump	0.36	26	16	10	11	15	19	0	0	0	0	9.4	0	0	-17
	13	Ambitious Standard	ground source el. heat pump	0.36	26	16	10	11	15	19	0	0	0	0	8.4	0	0	-17
Explanation of	Quanti																	
h_Transmission W/(m ² K) floor area related heat transfer coefficient by transmission / indicator for energy quality of building envelope (compactness + insulation							ulation)											
	q_h_nd kWh/(m²a) energy need for heating																	
q_ve_rec_h_usable kWh/(m²a) usable contribution of ventilation heat recovery a_h_nd_not kWh/(m²a) not concret heating (a_h_nd_not verse husable)																		
	q_h_nd_net kWh/(m²a) net energy need for heating (q_h_nd - q_ve_rec_h_usable) g_gh_out kWh/(m²a) generated heat heating system (net energy need + storage losses + distribution losses)																	
q_y_n_out q_w_nd																		
				nerated heat dhw (net energy need + storage losses + distribution losses)														
q_del_sum_gas,oil, sum delivered energy, energy carrier gas, oil, coal, biomass, electricity, district heating, other energy carriers coal,bio,, _el, kWh/(m²a) sum delivered energy, energy carrier gas, oil, coal, biomass, electricity, district heating, other energy carriers																		
q_exp_sum_el				sum produced electricity (negative value)														

Е

3.13.3 Sources / References Italy

Table 121: Sources / References Italy

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[CTI 2013]	CTI Raccomandazione 14, Prestazioni ener- getiche degli edifici – Determinazione della prestazione energetica per la classificazione dell'edificio, Comitato Termotecnico Italiano. Feb- braio 2013.	Technical Report No 14 from Italian Thermotech- nical Committee (2013), concerning the assess- ment of the energy carriers.
[D. Lgs. 192/2005]	Decreto Legislativo 19 agosto 2005, n. 192 "At- tuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia", pubblicato sul Supplemento ordinario n. 158/L alla Gazzetta Ufficiale n. 222 del 23 settembre 2005.	Legislative Decree No 192/2005, transposing the 2002/91/EC Directive (EPBD).
[D. Lgs. 311/2006]	Decreto Legislativo 29 dicembre 2006, n. 311 "Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante at- tuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia", pubblicato sul Supplemento ordinario n. 26 alla Gazzetta Ufficiale n. 26 del 1° febbraio 2007.	Legislative Decree No 311/2006, including amendments and addictions to Legislative Decree No 192/2005.
[D. Lgs. 28/2011]	Decreto Legislativo 3 marzo 2011, n. 28 "Attuazi- one della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE", pubblicato sulla Gazzetta Ufficiale n. 71 del 28 marzo 2011.	Legislative Decree No 28/2011, concerning the promotion of the use of renewable energy sources.

Reference shortcut	Concrete reference (in respective language)	Short description (in English)				
[D.M. 19/02/2007]	Decreto Ministeriale 19 febbraio 2007 "Disposizi- oni in materia di detrazioni per le spese di riqualifi- cazione energetica del patrimonio edilizio esis- tente, ai sensi dell'articolo 1, comma 349, della legge 27 dicembre 2006, n. 296", pubblicato sulla Gazzetta Ufficiale n. 47 del 26 febbraio 2007.	Decree 19/02/2007, concerning funding for energy refurbishment measures (efficiency values of heat generators).				
[D.M. 26/06/2009]	Decreto Ministeriale 26/06/2009 "Linee guida nazionali per la certificazione energetica degli edifici", pubblicato sulla Gazzetta Ufficiale n. 158 del 10 luglio 2009.	Decree 26/06/2009, concerning the energy per- formance certification of buildings.				
[D.M. 06/08/2009]	Decreto Ministeriale 6 agosto 2009 "Disposizioni in materia di detrazioni per le spese di riqualificazi- one energetica del patrimonio edilizio esistente, ai sensi dell'articolo 1, comma 349, della legge 27 dicembre 2006, n. 296", pubblicato sulla Gazzetta Ufficiale n. 224 del 26 settembre 2009.	Decree 06/08/2009, concerning funding for energy refurbishment measures (reference efficiency values of electrical heat pumps).				
[D.M. 26/01/2010]	Decreto Ministeriale 26 gennaio 2010 "Aggiorna- mento del decreto 11 marzo 2008 in materia di riqualificazione energetica degli edifici", pubblicato sulla Gazzetta Ufficiale n. 35 del 12 febbraio 2010.	Decree 26/01/2010, concerning funding for energy refurbishment measures (reference thermal transmittance values of the building envelope components).				
[D.P.R. 59/2009]	D.P.R. 2 aprile 2009 n. 59 "Regolamento di at- tuazione dell'articolo 4, comma 1, lettere a) e b), del decreto legislativo 19 agosto 2005, n. 192, concernente attuazione della direttiva 2002/91/CE sul rendimento energetico in edilizia", pubblicato sulla Gazzetta Ufficiale n. 132 del 10 giugno 2009.	Decree No 59/2009, concerning the application of Legislative Decree No 192/2005 about the mini- mum energy performance requirement of build- ings.				
[ECOFYS 2013]	ECOFYS, National plan for increasing the number of nearly zero-energy buildings in Italy, 2013.	Report by ECOFYS (2013) concerning the national plan for increasing the number of nearly zero- energy buildings in Italy.				
[EPBD 2002]	Direttiva 2002/91/CE del Parlamento Europeo e del Consiglio del 16 dicembre 2002 sul rendimento energetico nell'edilizia, pubblicata sulla Gazzetta Ufficiale delle Comunità europee n. L1 del 4 gen- naio 2003.	European Directive 2002/91/EC on the energy performance of buildings (EPBD).				
[EPBD recast 2010]	Direttiva 2010/31/UE del Parlamento Europeo e del Consiglio del 19 maggio 2010 sulla prestazi- one energetica nell'edilizia, pubblicata sulla Gazzetta Ufficiale dell'Unione europea n. L153 del 18 giugno 2010.	European Directive 2010/31/EU on the energy performance of buildings (EPBD recast).				
[ISTAT 2001]	ISTAT, Censimento della popolazione. Elaborazi- oni dell'Istituto Nazionale di Statistica, 2001.	Census data from the National Institute of Statis- tics (2001).				
[L. 90/2013]	L. 3 agosto 2013 n. 90 "Conversione in legge, con modificazioni, del decreto-legge 4 giugno 2013, n. 63, recante disposizioni urgenti per il recepimento della Direttiva 2010/31/UE del Parlamento eu- ropeo e del Consiglio del 19 maggio 2010, sulla prestazione energetica nell'edilizia per la definizi- one delle procedure d'infrazione avviate dalla Commissione europea, nonché altre disposizioni in materia di coesione sociale", pubblicata sulla Gazzetta Ufficiale n. 181 del 3 agosto 2013.	Law No 90/2013, transposing the 2010/31/EU Directive (EPBD recast) and amending the Legis- lative Decree No 192/2005.				
[NES 2013]	Ministero dello Sviluppo Economico, Strategia Energetica Nazionale: per un'energia più competi- tiva e sostenibile, marzo 2013.	Italian National Energy Strategy (2013) by the Ministry of Economic Development.				
[POLITO 2012]	V. Corrado, I. Ballarini, S.P. Corgnati, National scientific report on the TABULA activities in Italy, Politecnico di Torino, Torino, 2012.	National scientific report on the TABULA activities in Italy (2012).				
[POLITO 2014]	V. Corrado, I. Ballarini, S.P. Corgnati, Building Typology Brochure – Italy. Fascicolo sulla Tipolo- gia Edilizia Italiana, EPISCOPE - D2.3, 2014.	Italian "Building Typology Brochure" – Deliverable 2.3 of the EPISCOPE project.				

212 New Buildings in National Residential Building Typologies

Reference Concrete reference (in respective language) Short description (in English) shortcut [Reg. Piemonte Determinazione Dirigenziale 25 luglio 2011, n. 160 Calls for funding in Piedmont Region concerning "Legge regionale 7 ottobre 2002, n. 23, art. 2, NZEBs projects (2011). 2011] comma 2, lettera g) e 8, comma 5 e s.m.i. - Approvazione del "Bando regionale per la concessione di contributi per la realizzazione di edifici a energia guasi zero" e della modulistica relativa". pubblicata sul Bollettino Ufficiale della Regione Piemonte n. 30 del 28 luglio 2011. [TABULA 2013] T. Loga, N. Diefenbach et al., TABULA calculation TABULA document describing the common method - Energy use for heating and domestic hot TABULA calculation method (2013). water, TABULA documentation, 2013. [UNI/TS 11300-1] UNI/TS 11300-1, Prestazioni energetiche degli National technical specification for the calculation edifici - Determinazione del fabbisogno di energia of the energy performance of buildings. termica dell'edificio per la climatizzazione estiva UNI/TS 11300-1: Energy performance of buildings. ed invernale, Ente Nazionale Italiano di Unificazi-Evaluation of energy need for space heating and one. Maggio 2008. cooling (2008, under revision). [UNI/TS 11300-2] UNI/TS 11300-2, Prestazioni energetiche degli National technical specification for the calculation edifici - Determinazione del fabbisogno di energia of the energy performance of buildings. primaria e dei rendimenti per la climatizzazione UNI/TS 11300-2: Energy performance of buildings. invernale e per la produzione di acqua calda Evaluation of primary energy need and of system sanitaria, Ente Nazionale Italiano di Unificazione. efficiencies for space heating and domestic hot Maggio 2008. water production (2008, under revision). UNI/TS 11300-3, Prestazioni energetiche degli National technical specification for the calculation [UNI/TS 11300-3] edifici - Determinazione del fabbisogno di energia of the energy performance of buildings. primaria e dei rendimenti per la climatizzazione UNI/TS 11300-3: Energy performance of buildings. estiva, Ente Nazionale Italiano di Unificazione. Evaluation of primary energy and system efficien-Maggio 2010. cies for space cooling (2010, under revision). [UNI/TS 11300-4] UNI/TS 11300-4, Prestazioni energetiche degli National technical specification for the calculation edifici - Utilizzo di energie rinnovabili e di altri of the energy performance of buildings. metodi di generazione per la climatizzazione UNI/TS 11300-4: Energy performance of buildings. invernale e per la produzione di acqua calda Renewable energy and other generation systems sanitaria, Ente Nazionale Italiano di Unificazione. for space heating and domestic hot water produc-Maggio 2012. tion (2012).

TABULA

3.14 <NL> The Netherlands

(by EPISCOPE partner DUT)

3.14.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in the Netherlands

In October 2012, the Netherlands sent its first version of the National Plan Nearly Zero-Energy Buildings ('Nationaal Plan Bijna Energieneutrale Gebouwen', in short 'BENG') to the European Commission and to its national parliament [AgentschapNL, 2013a]. The plan sketches a strategy on how to achieve nearly zero-energy buildings at the end of 2018 (public buildings) and 2020 (other new buildings) respectively.

In the Netherlands, a non-dimensional number is used as an indicator of the building's energy performance, depending on how the building is used: the 'energy performance coefficient', ("energieprestatiecoëfficient" – epc). The epc is determined by dividing the calculated energy requirement of a building by a standardised energy performance, which is based on the heat-transfer surface and the total heated area of the dwelling [Guerra Santin & Itard, 2012]. The calculation of the epc should follow the norm NEN 7120: Energy Performance of buildings – Determination method ("Energieprestatie van gebouwen – Bepalingsmethode", in short EPG), which also allows using the prenorm NVN 7125 Energy Performance Standard Measures at District Level ("Energieprestatienorm Maatregelen op Gebiedsniveau", in short EMG). The determination method has the following characteristics:

- the energy use is determined for standard use and climate conditions;
- only the building related energy use is valued in the energy performance;
- if applicable, district related energy use can be valued with the EMG;
- the production of energy can take place inside or outside the building;
- renewable energy sources are valued;
- the net energy use is determined on a yearly basis.

The details of the Dutch calculation method for new buildings can be found in Table 122.

The epc was introduced in 1995 to set a minimal standard regarding the energy efficiency of new buildings (for existing buildings, a different coefficient is used). Over the years the epc standard has been tightened to improve the energetic quality of new buildings. The epc for a nearly zero-energy building is officially stated to be close to 0. In line with EU regulations, this norm will come into force at the end of 2018 for government buildings and at the end of 2020 for other buildings. This level is defined as 'nearly energy neutral' ("bijna-energieneutraal"), but the exact value is still unknown.

Regarding renewable energy sources, the principle is that builders are free to choose measures that reduce the demand for energy, use energy from renewable sources, and make effective use of fossil fuels, in order to achieve the required epc. As the requirements for the epc become stricter over time, the percentage of renewable energy will automatically become increasingly important in order to fulfil the requirement. Even so, it will still be compulsory to fulfil the requirements for thermal insulation of the building envelope of new buildings, as stipulated in the Building Decree ("Bouwbesluit"), which is part of the Housing Act ("Woningwet"). As for new and renovated dwellings, this decree prescribes an R_c of at least 3.5 m²K/W for the building envelope and a U value of 1.65 W/m²K for windows, doors, etc.

Since 2013, the epc for new and renovated homes should be not more than 0.6. In 2015, a further restriction to a maximum of 0.4 is planned. As stated above, the epc will be further reduced to 0 or nearly 0 to meet European nZEB standards.

Table 122: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in the Netherlands

Е

		C	Calculation	Metho	d New	Building R	egulation	s – (part 1)	
Cou	ntry	NL T	he Nethe	rlands				Status	08/2014
Nati	onal Req	uiremer	ts for New	Reside	ential E	Buildings		Special Aspects with (assumed) National N	
Legi	islation /	Standar	ds					There is no specific ca	
	7120: Energy		ance of buildir	igs - Dete	rminatior	n method		for nZEBs. The regula method is followed; the calculation should mee	e outcome of the
Ene	rgy Serv	ces							
х	Heating	x	DHW	Арр	liances				
	Cooling	x	Auxiliary	Othe	er:				
x	Ventilatio	on	Lighting						
Expla	anation / Co	omments							
Calc	ulation I	Procedu	re		Cal	culation period	l		
x	Calculati (building		gy need for he	ating		Month			
х	Calculati	on of delive	ered energy (s	ystem)		Month			
	nal System	6	vith heat recov	-	S				
x		solar syste							
		ecial syster							
On-Si	ite Electricit	y Productic	n	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹		
x	On-site C	HP		x	x	year	H-W		
х	On-site F	٧		x					
	Other en	arav aener							
		sigy gener	ation systems						
	¹ "self use" ity; self us	= parts of the	electricity demand	of the buildir	ng is directly ng - DHW -	covered by the pro	oduced electric-		
Expla	¹ "self use" ity; self us	= parts of the e considered f	electricity demand	of the buildir	ng is directly ng - DHW -	covered by the pro Household Electric	oduced electric- ity		
<u> </u>	ity; self us	= parts of the e considered f	electricity demand	of the buildir eating - Cooli	ng - DHW -	covered by the pro	bduced electric- ity	On the basis of NEN 7	
<u> </u>	ity; self us anation / Co e of Requ	= parts of the e considered f	electricity demand or "H-C-W-HE": He	of the buildir eating - Cooli	ng - DHW -	Household Electric	oduced electric- ity	performance coefficier calculated. For nZEBs	this coefficient
Туре	ity; self us anation / Co e of Requ U-values	= parts of the e considered f omments uirement of building sfer coeffici	electricity demand or "H-C-W-HE": He s (new but elements	of the buildir eating - Cooli	ng - DHW -	Household Electric	oduced electric- ity	performance coefficier calculated. For nZEBs must be equal to or ne are no specific nZEB r	this coefficient arly zero. There equirements for
Туре	ity; self us anation / Co e of Requ U-values Heat tran transmiss	= parts of the e considered f omments uirement of building sfer coeffici	electricity demand or "H-C-W-HE": He s (new but elements cient by	of the buildir eating - Cooli	Primary energy	Household Electric	ity	performance coefficier calculated. For nZEBs must be equal to or ne are no specific nZEB r building elements. The (based on the Housing	this coefficient arly zero. There equirements for Building Code Act) prescribes
Туре	ity; self us anation / Co e of Requ U-values Heat tran transmiss	= parts of the e considered for the considered for the e considered for the e considered for	electricity demand or "H-C-W-HE": He s (new but elements cient by	of the buildir eating - Cooli	Primary energy	Household Electric	ity	performance coefficier calculated. For nZEBs must be equal to or ne are no specific nZEB r building elements. The	tt (epc) can be this coefficient arly zero. There equirements for Building Code Act) prescribes new and reno-

Assessment of energy carriers in the Netherlands

In the Netherlands, almost exclusively gas is used for heating and domestic hot water. To these ends, the use of electricity is mostly auxiliary. The energy factors for each of the energy sources (primary energy value divided by the final energy value) are given in Table 123.

Table 123:	Dutch	primary	energy fa	actors
------------	-------	---------	-----------	--------

Label / type of factor	Total Primary Energy Factors Netherlands	Non-Renewable Primary Energy Factor Netherlands
Used for EPC rating	x	х
Used for building regulations re- quirements		
Label (national language)	Omrekenfactor naar primaire energie van de brandstof	Omrekenfactor naar primaire energie van de brandstof
Description / type of weighting factor	ratio between primary energy use and final energy use for both non-renewable and renewable energy sources, accounting for energy losses during generation and transport	ratio between primary energy use and final energy use for both non-renewable and renewable energy sources, accounting for energy losses during generation and transport
Factor is multiplied by delivered energy based on the	gross calorific value	gross calorific value
Reference	Gas: [TNO, 2008] Electricity: [NEN 2904]	Gas: [TNO, 2008] Electricity: [NEN 2904]
Natural gas	1	1
Heating oil	1	1
Electricity	2.56	2.3

*) Oil is mainly used in local heating, an energy factor of 1 is assumed

3.14.2 Integration of National Requirements for New Buildings and NZEB Standards in the Dutch Residential Building Typology

Classification scheme for the Dutch residential building stock ("Building Type Matrix")

The Dutch building typology is largely based on earlier work carried out by the Netherlands Enterprise Agency ("Rijksdienst voor Ondernemend Nederland" – RVO.nl) and its predecessors AgentschapNL and SenterNovem, which developed a set of reference dwellings that each cover a segment of the housing stock [AgentschapNL, 2011]. As in TABULA, the segments are distinguished according to form (e.g. terraced houses, flats) and building year. The Dutch building typology has been expanded in the EPISCOPE project. Among others, 6 new classes developed later by AgentschapNL [AgentschapNL, 2013b] have been added. The result is presented below.

216 New Buildings in National Residential Building Typologies TABULA

EPISCOPE

Figure 53: Classification scheme ("Building Type Matrix") of the Dutch residential building typology

<NL> The Netherlands

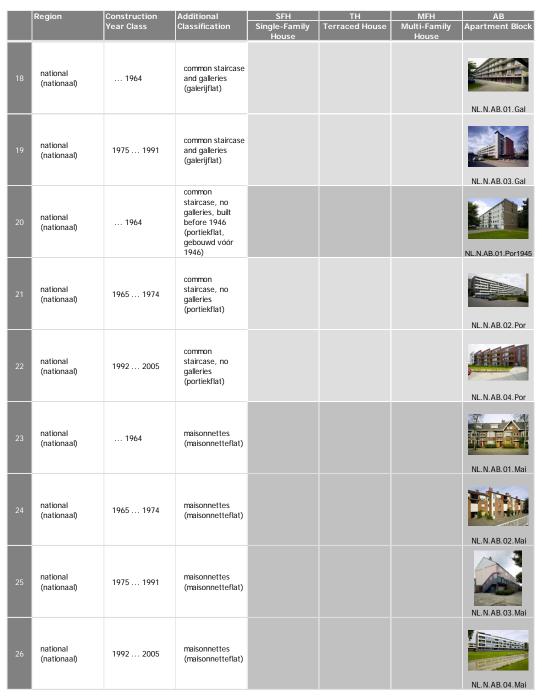

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
6	national (nationaal)	1965 1974	detached (vrijstaand)	NL.N.SFH.02.Deta			
7	national (nationaal)	1975 1991	detached (vrijstaand)	NL.N.SFH.03.Deta			
8	national (nationaal)	1964	semi-detached (twee-onder-één- kap)	NL.N.SFH.01.Semi			
9	national (nationaal)	1992 2005	semi-detached (twee-onder-één- kap)	NL. N. SFH. 04. Semi			
10	national (nationaal)	2006	semi-detached (twee-onder-één- kap)	NL. N. SFH. 05. Semi			
11	national (nationaal)	1964	terraced house, middle row, built in 1946-1964 (tussenwoning, gebouwd in 1946- 1964)		NL.N.TH.01.Mid1964		
12	national (nationaal)	1964	end house, built before 1946 (hoekwoning, gebouwd vóór 1946)		NL.N.TH.01.End1945		
13	national (nationaal)	1964	end house, built in 1946-1964 (hoekwoning, gebouwd in 1946- 1964)		NL.N.TH.01.End1964		
14	national (nationaal)	1965 1974	end house (hoekwoning)		NL.N. TH. 02. End		
15	national (nationaal)	1975 1991	end house (hoekwoning)		NL.N.TH.03.End		
16	national (nationaal)	1992 2005	end house (hoekwoning)		NL.N.TH.04.End		
17	national (nationaal)	2006	end house (hoekwoning)		NL.N. TH. 05. End		

Figure 54: Classification scheme ("Building Type Matrix") of the Dutch residential building typology, further building types for single family and terraced houses

218 New Buildings in National Residential Building Typologies

TABULA

EPISCOPE

Photos: courtesy of AgentschapNL (now RVO.nl)

Figure 55: Classification scheme ("Building Type Matrix") of the Dutch residential building typology, further building types for apartment buildings

The number in the name of the classes refers to the building period. The classes containing "05" in their names present the newest buildings, which have been built after 2005. Some data regarding these classes are presented in Table 124.

TABULA category		SFH	SFH	тн	тн	MFH	AB
dwelling type		detached house	semi-detached house	terraced house, mid-row	terraced house, end-row	other multi- family buiilding	gallery flat
		NL.N.SFH.05.Gen	NL.N.SFH.05.Semi	NL.N. TH. 05. Gen	NL.N.TH.05.End	NL.N.MFH.05.Gen	NL.N.AB.05.Gen
Number of dwellings		1	1	1	1	27	36
Number of full storeys (condi- tioned)		2	2	2	2	4	4
Number of directly at- tached neighbour buildings		0	1	2	1	0	0
Usable floor space	m²	170	148	124	124	2756	2941
TABULA refer- ence area (con- ditioned floor area, internal dimensions)	m²	186	162	137	137	3032	3235
R _c value façade	m ² K/W	3.5	3.5	3.5	3.5	3.5	3.5
R _c value roof	m ² K/W	4.0	4.0	4.0	4.0	4.0	4.0
R _c value ground floor	m²K/W	3.5	3.5	3.5	3.5	3.5	3.5
U value win- dows	W/m ² K	1.65	1.65	1.65	1.65	1.65	1.65
U value front	W/m ² K	1.65	1.65	1.65	1.65	1.65	1.65

Table 124: Exemplary new buildings representing the latest construction year classes (2006 ...)

<NL> The Netherlands

Source: [AgentschapNL, 2013b]

door

Building example: variants meeting three energy performance levels for new buildings

The Netherlands has no minimum requirements in terms of U values or R_c values for the existing stock. However, there are such minimum requirements for new buildings. Moreover, these resistance values have to be taken into account in order to attain the prescribed epc levels (0.8 since 2006, 0.6 since 2011).

In Table 125 three levels are presented, namely a minimum requirement, an improved standard and an ambitious or nZEB standard. For the minimum requirement, resistance values have been chosen that, under normal circumstances, would result in an epc of 0.6 or less. The presented U values are the same as in Table 124. These values indicate the existing state, without any refurbishment or other improvements.

The values in the column 'improved standard' denote some minor improvements to the respective homes. Most values are the same as those denoting the existing state, with the exception of the introduction of a low-temperature boiler and balanced ventilation with heat recovery.

The ambitious or nZEB standard includes extra insulation, plus the introduction of an air to air/water heat pump and balanced ventilation with heat recovery. Regarding the insulation and the installations, we used the following nZEB norms given by [AgentschapNL, 2013b]:

- façade: $R_c > 5.0 \text{ m}^2\text{K/W}$
- roof: $R_c > 6.0 \text{ m}^2 \text{K/W}$
- ground floor: $R_c > 5.0 \text{ m}^2\text{K/W}$
- windows: $U = 1.00 \text{ W/m}^2\text{K}$
- front door: $U = 1.4 \text{ W/m}^2\text{K}$
- low-temperature (35-45°C), high-efficiency boiler (HR107)
- balanced ventilation, 95% heat recovery
- solar boiler, including 5.5 m² of solar cells
- entire south-oriented roof used for PV panels

Table 125 presents the resulting insulation and system data for one of the six newest classes, namely a multi-family building not being a gallery flat. The corresponding page in the national brochure concerning the building typology is shown in Figure 56; the results of some calculations with the TABULA program for this building type are included in Table 126.

Energy Performance L	evel	Minimum Requirement	Improved Standard	Ambitious Standard / NZEB
U values				
Roof	W/(m²K)	0.25	0.25	0.17
Wall	W/(m²K)	0.29	0.29	0.20
Window	W/(m²K)	1.65	1.65	1.00
Door	W/(m²K)	1.65	1.65	1.40
Floor	W/(m²K)	0.29	0.29	0.20
Heat Supply System				
Heat generator		high efficiency boiler, high tempera- ture	High efficiency boiler, low tempera- ture	Air to air/water heat pump
Ventilation system		exhaust, direct current	balanced, direct current	balanced, direct current
Thermal solar boiler		no	no	yes

Table 125: Exemplary multi-family house (MFH) – definition of variants

<NL> The Netherlands

6		26 Referentiewoningen nieu	wbouw 2013		3	e
		Jaarlijkse CO ₂ emissie	44.274 kg	-		
		Jaarlijks energieverbruik per m ² volgens NEN 7120	286 MJ/m ²			
		EPC volgens NEN 7120	0,60	•		
	Colofon	Energieprestatie				
5	Literatuurverwijzing	* met behulp van een kwaliteitsverkla	ing	oz, i m conectoropperviakte, aneen vo	or tapwater	_
	aandacht	Rendement douche WTW Zonneboiler		48%* 62,1 m ² collectoroppervlakte, alleen vo	or topwater	_
	Een goede woning vergt	Rendement tapwater		70%* 48%*		_
	ectanterooranig van Reazes	Type warmtapwatersysteem		combiketel HRww CW4		_
	Verantwoording van keuzes	Type ventilatoren		Gelijkstroom		
	3.0 Appurtementencomplex	Rendement warmteterugwinning		95%*		
	3.6 Appartementencomplex	Type ventilatiesysteem		Mechanische toe- en afvoer		
	3.5 Galerijcomplex	Type verwarmingsinstallatie		HR-107 ketel, LT met radiatoren		_
	3.4 Vrijstaande woning	Installatietechnische gegevens				
	3.3 Twee-onder-een-kapwoning	Verhouding Ag/ Agentes	1,0	-		
		Verliesoppervlakte A _{weter}	2644,6 m ²			
	3.2 Hoekwoning	Gebruiksoppervlakte A	2756,3 m ²			
	3.1 Tussenwoning	Aantal bouwlagen Aantal woningen	27			
	2	Kenmerken van het woongebouw Aantal bouwlagen	5	Buitenzonwering op (handmatig)	Z, W, O	
	uitgewerkt			U-waarde voordeur	1,65 m²k	(N
	Zes referentiewoningen	Gebruiksoppervlakte A	92,1 m ²	U-waarde ramen	1,65 m ² k	(//)
	referentiewoningen	Verdiepingshoogte	2,6 m	R _c -waarde begane grondvloer	3,5 m²K/	w
	Doel en gebruik	Woningdiepte	11,9 m	R,-waarde dak	4,0 m ² K/	
	2	Beukmaat	8.3 m	R,-waarde gevel	3,5 m ² K/	w

Source: [AgentschapNL, 2013b]

Figure 56: "Building Display Sheet" of the exemplary multi-family building

Table 126: Exemplary MFH – Results of the energy balance calculation; Procedure: TABULA method

Variant N°		001	002	003
Label of the variant triplet			Gen.ReEx.001 (mu an gallery flat, built	
Variation level		Minimum Requirement	Improved Standard	Ambitious Standard / NZEB
TABULA reference area	m²	3032	3032	3032
Energy need for heating	kWh/(m²a)	57	57	28
Delivered energy	kWh/(m²a)	66	31	13
Fossil fuels	kWh/(m²a)	66	31	0
Renewable fuels	kWh/(m²a)	0	0	0
Electricity	kWh/(m²a)	0	0	13
Auxiliary energy	kWh/(m²a)	5	7	7

TABULA calculation results for all exemplary buildings

Table 127 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all six exemplary buildings.

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal k/\h/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other k/\h/(m²a)	q_exp_sum_el kWh/(m²a)
SFH (detached)	01	Minimum Requirement	0.83	72	0	72	77	10	14	97	0	0	0	0	0	0	0
A.A.	02	Improved Standard	0.83	72	33	39	45	10	14	62	0	0	0	0	0	0	0
NL.N. SFH. 05. Gen	03	Ambitious Standard / NZEB	0.55	41	22	19	24	10	24	0	0	0	0	15	0	0	0
SFH (semi-detached)	01	Minimum Requirement	0.62	66	0	66	71	10	14	91	0	0	0	0	0	0	0
	02	Improved Standard	0.62	66	34	32	38	10	14	55	0	0	0	0	0	0	0
NL.N.SFH.05.Semi	03	Ambitious Standard / NZEB	0.42	37	22	15	20	10	24	0	0	0	0	13	0	0	0
TH (mid-row)	01	Minimum Requirement	0.56	61	0	61	66	10	14	86	0	0	0	0	0	0	0
	02	Improved Standard	0.56	61	33	27	33	10	14	50	0	0	0	0	0	0	0
NL.N.TH.05.Gen	03	Ambitious Standard / NZEB	0.36	33	22	11	16	10	24	0	0	0	0	12	0	0	0
TH (end-row)	01	Minimum Requirement	0.69	67	0	67	72	10	14	92	0	0	0	0	0	0	0
and dr.	02	Improved Standard	0.69	67	33	34	39	10	14	57	0	0	0	0	0	0	0
NL.N. TH. 05. End	03	Ambitious Standard / NZEB	0.46	38	22	15	21	10	24	0	0	0	0	14	0	0	0
AB	01	Minimum Requirement	0.53	59	0	59	64	15	19	89	0	0	0	0	0	0	0
	02	Improved Standard	0.53	59	33	26	31	15	19	54	0	0	0	0	0	0	0
NL.N. AB.05.Gen	03	Ambitious Standard / NZEB	0.35	30	21	10	15	15	29	0	0	0	0	13	0	0	0
MFH	01	Minimum Requirement	0.52	57	0	57	62	15	19	87	0	0	0	0	0	0	0
	02	Improved Standard	0.52	57	33	24	30	15	19	52	0	0	0	0	0	0	0
NL.N.MFH.05.Gen	03	Ambitious Standard / NZEB	0.33	28	20	8	13	15	29	0	0	0	0	13	0	0	0
Explanation of Q h_Transmission q_h_nd q_ve_rec_h_usable q_b_pd_net		ties (TABULA Data W/(m²K) floor area kWh/(m²a) energy ner kWh/(m²a) usable cor kWh/(m²a) net energy	related he ed for hea htribution (nting of ventila	ition hea	t recover	ry -		dicator fo	or energy	y quality	of buildi	ng enve	lope (cor	npactne	ss + insu	ulation)

Table 127:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

EPISCOPE

NL.N.WFH.05.Gen	Standard	I / NZEB															
Explanation of Quan	tities (TABI	JLA Data	fields)														
h_Transmission	W/(m ² K)	floor area	related he	at trans	fer coeff	icient by	transmis	ssion / ir	ndicator f	or energ	y quality	y of build	ing enve	lope (co	mpactne	ss + insu	ulation)
q_h_nd	kWh/(m²a)	energy ne	ed for hea	ting													
q_ve_rec_h_usable	kWh/(m²a)	usable cor	ntribution	of ventila	ation hea	at recove	ery										
q_h_nd_net	kWh/(m²a)	net energy	need for	heating	(q_h_nc	I - q_ve_	_rec_h_u	sable)									
q_g_h_out	kWh/(m ² a)	generated	heat heat	ing syst	em (net	energy	need + st	torage lo	osses + c	istributio	n losse	s)					
q_w_nd	kWh/(m ² a)	net energy	need dor	nestic h	ot water												
q_g_w_out	kWh/(m²a)	generated	heat dhw	(net en	ergy nee	d + stor	age loss	es + dis	ribution I	osses)							
q_del_sum_gas,oil, coal,bio,, _el, dh,other,el	kWh/(m²a)	sum delive	ered energ	y, enerç	gy carrie	r gas, oi	l, coal, bi	iomass,	electricit	y, distric	t heatin	g, other e	energy c	arriers			
q_exp_sum_el	kWh/(m²a)	sum produ	iced elect	ricity (ne	gative v	alue)											

3.14.3 Sources / References Netherlands

The references used in this subchapter are listed in Table 128.

Table 128: Sources / References for the Netherlan

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[AgentschapNL, 2011]	AgentschapNL (2011), Voorbeeldwoningen 2011, http://www.rvo.nl/onderwerpen/duurzaam- ondernemen/gebouwen/woningbouw/particuliere- woningen/voorbeeldwoningen	presents a building typology, which is further developed in EPISCOPE
[AgentschapNL, 2013a]	AgentschapNL (2013), Infoblad energieneutraal bouwen – definitie en ambities, http://www.agentschapnl.nl/sites/default/files/Infobl ad%20Energieneutraal%20bouwen%20Definitie% 20en%20ambitie%20april%202013.pdf	brochure of the Dutch national government regard- ing the definition of nZEB
[AgentschapNL, 2013b]	AgentschapNL (2013), Referentiewoningen nieuw- bouw 2013, http://www.rvo.nl/onderwerpen/duurzaam- ondernemen/gebouwen/energieprestatie- nieuwbouw-epn/ontwerpen/referentiewoningen- nieuwbouw	presents 6 reference dwellings built after 2005, which form an extension of the Dutch building typology
[Guerra Santin & Itard, 2012]	Guerra Santin, O. / Itard, L. (2012), The effect of energy performance regulations on energy con- sumption, Energy Efficiency (2012) 5:269–282	article about the impact of the epc standard on the energy performance of dwellings
[NEN 2904]	NEN 2904:2004 - Energieprestatie van utiliteitsgebouwen - Bepalingsmethode	describes (among others) the calculation method of the epc for utility buildings. It contains the ratio of primary and final energy use for electricity, which is not only valid for utility buildings, but for all buildings.
[NEN 7120]	NEN 7120+C2:2012 nl - Energieprestatie van gebouwen - Bepalingsmethode	describes (among others) the calculation method of the epc for new buildings (and also the Energy Index for existing buildings)
[NVN 7125]	NVN 7125:2011 n - Energieprestatienorm voor maatregelen op gebiedsniveau (EMG) - Bepalingsmethode	describes a method for including the energy infra- structure at the district level in the calculation of the energy performance of a building. This can be seen as an addition on NEN 7120.
[TNO 2008]	TNO Built Environment and Geosciences (2008), Information on Standardization: Numerical indica- tor for the energy performance based on primary energy use and CO2 emissions - Procedures according to CEN standard EN 15603	contains the ratio of primary and final energy use for gas

3.15 <NO> Norway

(by EPISCOPE partner NTNU–SINTEF)

Minimum requirements on insulation levels were first introduced in Norway in the technical specifications of the building code from 1969 (TEK69). However, the use of mineral wool had already been common praxis since the mid '50s, also due to a requirement from Husbanken (The Norwegian housing bank) on a U-value of 0.4 W/m²K for walls and roofs. In that period there was a high need for dwellings and Husbanken has financed 62 % of all new dwellings built in the period 1952-64 [Enova, 2012]. The technical requirements have been further tightened in 1987, 1997 and 2007, when for the first time it was included an overall energy performance requirement on energy demand. This was further sharpened in 2010 and it is today's building code's minimum performance requirement, known as TEK10 [Kommunal- og moderniseringsdepartementet, 2010]

3.15.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Norway

The current legal requirements are stated in the TEK10, which is foreseen to be revised in 2015 and in 2020. According to a White Paper on buildings energy efficiency by the Norwegian government [Kommunal- og regionaldepartementet, 2012], subsequently approved by the parliament, the TEK15 will implement the passive house standard, while TEK20 will set the requirements for nearly zero energy buildings. This is despite the fact that Norway – not being a member of the EU – is not forced to implement the EPBD recast from 2010, but shall rather approve case by case the European Directives. At the time of writing, indeed, the Norwegian parliament has not yet voted for its implementation.

Furthermore, a national voluntary standard exists that defines what a "passive house" is in Norwegian conditions. For the residential sector this is the standard NS 3700 [Standard Norge, 2013], while NS 3701 is the standard for non-residential buildings. However, it is not clear for the time being whether the TEK15 will be based on the NS 3700 or if modifications will be applied.

The TEK10 sets requirements on the energy needs but do not set requirements on the delivered energy demand, see chapter below. The EPC, on the other hand, is based on delivered energy demand, and so is the definition of the energy label, see below. The methodology for calculation of both energy needs (including heating, cooling, ventilation, hot water, auxiliaries, lighting and appliances) delivered energy, energy carriers distribution and primary energy and/or carbon emissions is described in the NS 3031 [Standard Norge, 2007]. The TEK10, as the building code in general, is under the responsibility of the Directorate for Buildings Quality (DiBK), while the EPC is under the responsibility of the Directorate for Water and Energy Resources (NVE).

A national definition of nearly zero energy buildings (nZEB) does not yet exists, such as defined in a standard. However, the research centre on Zero Emission Buildings (ZEB centre) has elaborated a definition that applies to its pilot buildings (for the time being: six single building – both residential and non, both new and refurbished – one new small development of about 20 dwellings and one new large development of about 700 dwellings, with some commercial activity included). For reference to nZEB definitions see [Sartori, Napolitano, & Voss, 2012] and [Buildings Performance Institute Europe, 2011].

Minimum requirements for new residential buildings in Norway

Minimum requirements are set in TEK10 in two ways: either prescriptive or performance compliance. With the prescriptive method a building shall comply with a list of requirements on the most relevant parameters influencing energy demand, such as U-values, air tightness, heat recovery efficiency. Following the prescriptive method, however, the result will normally be within the limit specified by the performance method. With the performance method a building shall comply with an overall energy performance indicator, expressed in total energy need (i.e. not in delivered energy, and hence, the efficiency of the system is not considered). The table below shows the energy performance requirement for the two types of buildings defined in the norm: small house (SFH and TH in TABULA) and apartment block (MFH and AB in TABULA). It shall be noticed that the requirement is on total energy need, including heating, ventilation, hot water, auxiliary, lighting and appliances, while cooling is normally not needed in residential buildings in Norway (anyway if there is cooling, the total limit remains the same).

Building type	Total energy need (kWh/m ² a)

Small house120 + 1600/m² (heated floor area of the building)Block of apartments115

Energy needs for hot water, lighting and appliances are given as standardized values in NS 3031, and are the same for both residential types. These values are as follows:

- Hot water: 30 kWh/m²a
- Lighting: 11 kWh/m²a
- Appliances: 18 kWh/m²a

The total of these three items is 58 kWh/m²a, to which one should add the electric consumptions of ventilation fans (since balanced ventilation system with heat recovery is compulsory). In apartments this falls in the range of 5-7 kWh/m²a, while it is somewhat lower in small house due to lower airflows required. Hence, energy need for space heating is limited to ca. 50 kWh/m²a in apartments and to ca. 60 kWh/m²a in small house, in order to comply with the overall limit. Furthermore, the NS 3031 requires that energy calculations are performed in reference to the Oslo climate.

Norwegian calculation method to comply with new building regulations for residential buildings

The EPC calculation method is based on the NS 3031, and it expresses two indicators: one energy performance indicator and one heating system indicator. The energy performance indicator is calculated in terms of delivered energy and expressed as a label with character from A (best) to G (worst), according to the EPBD. The heating system indicator is calculated as the share of heating needs (incl. hot water) covered by energy carriers other than electric-ity and fossils, and is expressed as a colour from green (best) to red (worst).

The EPC labelling is therefore shown in a two-dimensional grid as shown below. Since first established in 2010, the reference performance values have been trimmed and those shown below refer to the last adjustment, in force since 01/07/2013.

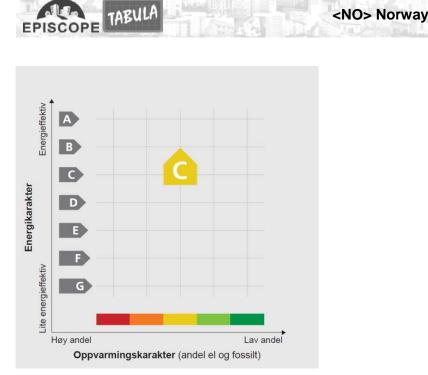


Figure 57: EPC label from Norway

The values for delivered energy that determine the energy class label are shown in the table below. It shall be noticed that the class C is meant to represent a new building built according to the TEK10, while class A is meant to represent a passive house built according to the NS 3700. Class F corresponds to the TEK69 + 7 %, so it represents buildings from that period, never refurbished and whose performance has, on the contrary, deteriorated.

227

Building type	Delivered energy per m ² heated floor area (kWh/m ² a)									
Energy class label	Α	В	C D E		E	F	G			
	< =	< =	< =	< =	< =	< =	< =			
Small house	85+800/A	115+1600/A	145+2500/A	175+4100/A	205+5800/A	250+8000/A	> F			
Apartment	75+600/A	95+1000/A	110+1500/A	135+2200/A	160+3000/A	200+4000/A	> F			

 Table 129: Delivered energy determining the energy class label

The values for share of heating needs (hot water included) that determine the heating system performance colour are shown below.

Table 130: Values of heating needs determining the heating system performance colour

30.0 % 47.5 % 65.0 % 82.5 % 100.0 %
--

Status of NZEB definition for residential buildings in Norway

The two most important aspects of the ZEB definition developed by the ZEB centre are the level of ambition and the carbon (equivalent) emission factors, especially for electricity. It shall be pointed out that the aim of the Norwegian research centre on Zero Emission Buildings (ZEB) is to develop competitive products and solutions of buildings with zero emission of greenhouse gases related to their production, operation and demolition.

Four different levels of ambitions are defined as:

 ZEB-O÷EQ: Emissions related to all energy use in operation (O) except energy use for equipment/appliances (EQ) shall be compensated with on-site renewable energy generation. • ZEB-O: Emissions related to all operational energy (O) shall be compensated for with on-site renewable energy generation as well as energy use for appliances.

TABULA

- ZEB-OM: Emissions related to all operational energy (O) use plus embodied emissions from the materials (M) and technical installations shall be compensated for with on-site renewable energy generation.
- ZEB-COM: The same as ZEB-OM, but also taking into account emissions related to the construction (C) process of the building.

The following figure illustrates the four ambition levels for an "all electric" (all delivered and exported energy is electricity) office building used in a concept analysis. The emission on the y-axis has to be balanced (offset) by renewable electricity production (e.g. PV), which is either used for self-consumption (reducing delivered electricity) or exported electricity to the grid.

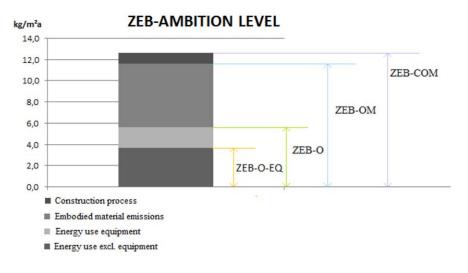


Figure 58: Four ZEB ambition levels for an all-electric office building

When considering (carbon equivalent) embodied emissions in materials one should bear in mind that materials used in buildings are produced in many different ways at many different geographic locations. In Norway, building materials are both locally produced and transported short and long distances. The electricity factor used for the different materials differs with changing production locations. Also, emission factors for electricity are calculated in different ways. Some emission calculations are detailed and based on the methodology of life cycle assessments, others consider only the emissions from the actual combustion processes.

When considering (carbon equivalent) emissions from the use of energy carriers in the operating lifetime of a building, the most challenging factors to define are those for electricity and district heating, since they depend on a mix of sources. In the ZEB centre an extensive discussion has taken place on how electricity from the grid should be considered with regard to $CO_{2_{eq}}$ emissions. With the renewable hydropower based electricity production system in Norway, one could argue that the $CO_{2_{eq}}$ factor should be low. However, so far the approach in the ZEB centre is as follows:

 Norway is already a fully integrated part of the Nordic electricity system and over time will be a fully integrated part of the European system. Hence, the emission from electricity use, also in Norway, should be the average emission per kWh produced electricity in Europe.

- Simulations of the European electricity system towards 2050 done by SINTEF Energy [Graabak & Feilberg, 2011] indicate that it is technically and economical possible to reduce CO_{2_eq} emission by 90 % towards 2050.
- Approximately the same conclusion is given in "*A roadmap for moving to a competitive low carbon economy in 2050*", hence 85-95 % reduction towards 2050 is a realistic goal.

If a linear development is assumed, with an assumed lifetime of the building of 60 years (standard value used in the ZEB centre), the average emission factor is 132 grams of CO_{2eq} /kWh. The average factor per decade is provided in the following table.

, v	Emission fac

Table 131: Future assumed CO2 emission factors

Year	Emission factor average [grams CO₂ eq/kWh]
2010	360
2020	277
2030	194
2040	112
2050	29
Linear average over the period	132

The report from [Lien, 2013] on CO2 emissions from biofuels and district heating recommends the basic assumption of carbon neutrality for the direct combustion of biofuels, but accounting for the use of fossil fuels in the production chain of the biofuels. This is the current practice within the ZEB Centre. Emission factors for different types of biofuels are listed in the table below.

Biofuel type	gCO ₂ /MJ	gCO₂/kWh
GROT(waste from wood harvesting) wood chips	1	3,6
EU wood chips	4	14,4
GROT pellets/briquettes	2	7,2
EU wood pellets/briquettes	4	14,4
EU wood pellets/briquettes	22	79,2
Wheat straw	2	7,2
Biogas from wet manure	8	28,8
Biogas from dry manure	7	25,2

Table 132: CO2 emission factors for different biofuels

According to Lien (2013), district heating should not be viewed as emission-free waste heat utilization but should instead be analysed on the basis of the actual GHG emissions associated with its production. The present composition of incinerated waste in Norway is around 50 % fossil based. Specific GHG emissions from waste-incineration-based district heating are comparable to the combustion of natural gas. The specific CO2 emissions from waste incineration are given in Lien (2013) to be 211 grams of CO2 eq/kWh. However, here no consideration is made for the case of CHP (Combined Heat and Power) based district heating system and how to allocate the total emissions from the plant to the electricity and the heat generated. In practice, district heating values should be ideally available from case to case or retrieved from average national values available ion statistics.

Table 133: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in Norway

Е

Calculation Method New Building Regulations – (part 1)												
Cour	Country NO Norway							Status	06/2014			
National Requirements for New Residential Buildings							Special Aspects with (assumed) National I					
Legis	slation /	Stand	darc	ls						TEK10 (2010) will bec		
Requirements set in TEK10 (2010). Calculation methodology specified in NS 3031 (2014).							(2015) and then TEK20 (2020)					
	nation / Co		its									
	gy Servi	ces								Currently the ZEB cen eral levels of ambition		
x	Heating		Х	DHW	x		iances			balancing on the operation	ational energy	
	Cooling		Х	Auxiliary		Othe	er:			without consideration the compensation of the		
X	Ventilatio		X	Lighting						energy, to the conside	ration of embod-	
•	nation / Co g is not co			residential b	uildiı	ngs.				ied energy/emissions	in the materials.	
Calcu	ulation F	Proce	dur	e		-	Cal	culation period		Assessment of energy		
x	Calculati (building		nergy	y need for h	eatin	g		ourly simplified alculations (so praxis		introduced based on either primary energy or carbon emission equivalent conversion factors, or both. Such fac- tors are not yet defined as national		
x	Calculati	on of d	elive	red energy (syste	em)		Idem		standard.		
Explai	nation / Co	ommen	its									
Based	on NS 303	31 (201	4)									
Cons	sideratio	on of S	Spe	cial Tech	nol	ogies	5			In the NS 3031 PV is the sole form of electricity generation considered, and it is only possible to cover electric spe- cific demand (auxiliary, ventilation, lighting and appliances). This will have		
Therm	al Systems	5									er electric spe-	
X	Ventilatio	on syste	em w	ith heat reco	very	,					r, ventilation, s). This will have	
X	Thermal	solar sy	/sten	า						to be changed in TEK		
	Other sp	ecial sy	stem	IS:								
On-Sit	e Electricit	y Produ	uctior	ı	F	eed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹			
	On-site C	CHP										
x	On-site PV x year HE							HE				
Other energy generation systems:												
¹ "self use" = parts of the electricity demand of the building is directly covered by the produced electric- ity; self use considered for "H-C-W-HE": Heating - Cooling - DHW - Household Electricity												
•	Explanation / Comments Based on NS 3031 (2014)											

Calculation Method New Building Regulations – (part 2)										
Cour	ntry	NO	Norway				Status	06/2014		
National Requirements for New Residential Buildings							Special Aspects with regard to the (assumed) National NZEB Definition			
Туре	of Re	quirem	ents (new bui	ldings	5)		All options ticked at			
x	U-value	es of buil	ding elements		Primary		the NS 3031, but no have been prepare	d. Reference is		
		transfer coefficient by energy				made to EN 15603. The NS 3700 does not include a re-				
x *	Energy	need for	r heating		Carbon d	ioxide emissions	quirement for delive primary energy or c			
	Delivered energy x Other Total electricity and fossil fuels delivered**					fossil fuels deliv-	Such requirements though are likely to be introduced in TEK20, and already in TEK15 for delivered energy only.			
Expla	nation /	Commer	nts				Furthermore, other requirements apply to specific components, such as:			
Accor	ding to N	S 3700 p	assive house stan	dard for	residential	buildings				
	* compliance with an overall energy performance indicator/total energy need, as described above						• U-value of win <= 0.8 W/m ² K	dows and doors:		
60 % (* *There is a requirement that buildings shall have a heating system where at least 60 % of the heating need (40 % in buildings smaller than 500 m2) can be satisfied by energy carriers other than fossil fuels or direct use of electricity.						 Normalized (over floor area) thermal bridge effect: <= 0.03 W/m²K 			
	,			Air tightness n	l₅0 <= 0.6 ach					
				 Ventilation heat ciency: >= 80 	at recovery effi- %					
				• Specific Fan F <= 1.5 kW/(m						

Assessment of energy carriers in Norway

The norm NS 3031 describes how to make use of conversion factors to convert delivered energy quantities, per each energy carrier, into equivalent amounts of primary energy and carbon emissions. However, the norm does not provide reference national values for such conversion factors; but refer to the European norm EN 15603. In general, national standard-ized conversion factors do not exist yet, though the ZEB centre has adopted its own, as explained before.

Nevertheless, in practice the conversion factors are not used for the time being, since the EPC classification is based on delivered energy, as seen above.

Label / type of factor	Total Primary Energy Factor Norway	Non-Renewable Primary Energy Factor Norway		
Used for EPC rating				
Used for building regulations re- quirements				
Label (national language)	Total primærenergi factor Norge	Ikkefornybar primærenergi factor Norge		
Description / type of weighting factor	non-renewable + renewable energy amounts, includes upstream energy ex- penditures (transportation, transformation) beyond national boundary	non-renewable energy amounts, includes upstream energy expenditures (transporta- tion, transformation) beyond national boundary		
Factor is multiplied by delivered energy based on the	net calorific value	net calorific value		
Reference	[Ecoinvent 2014]	[Ecoinvent 2014]		
Heating oil	1.35	1.35		
Firewood	1.09	0.09		
Electricity	1.28	0.27		
District heating	1.5	0.5		

Methodological points for discussion in Norway

As discussed above the methodological points that have most relevance in the ZEB definition from the ZEB centre are the ambition level and the conversion factors for electricity, district heating, and the embodied emissions in materials.

One problem is that as the norm is per today allows subtracting PV generation only from the household electricity (lighting and appliances); while the TABULA methodology only looks at heating, ventilation and hot water. Therefore the effect of PV is invisible, if we apply the norm as it is; see example in Table 137.

Furthermore, ongoing discussion and research focus on the characterization of the temporal match between load and onsite generation, as well as the interaction with the grids. For the time being though no specific indicator is implemented. For these aspects see [Salom, Widen, Candanedo, Sartori, Voss, & Marszal, 2011], developed in the context of the joint IEA Solar Heating and Cooling (SHC) Task 40 and Energy in Buildings and Communities (EBC) Annex 52 "Net Zero Energy Solar Buildings"

3.15.2 Integration of National Requirements for New Buildings and NZEB Standards in the National Residential Building Typology

No formal residential building typology classification exists in Norway. The national residential buildings statistics is under the responsibility of Statistics Norway (SSB), and has been subject to major revisions during the recent year. SSB is about to launch their updated building statistics during 2014, and thereafter it will be possible to link the statistics with the building typology for Norway that is under development in EPISCOPE. This classification scheme is shown below, using 7 construction year classes for SFH, TH and AB, after having grouped different SSB building type subclasses to the SFH, TH and AB classes.

Classification scheme for the Norwegian residential building stock ("Building Type Matrix")

The figure below shows the residential building stock classification scheme for Norway, based on the use of SFH, TH and AB building types and 7 construction year classes.

	Region	Construction Year Class	Additional Classification	SFH Single-Family House	TH Terraced House	MFH Multi-Family House	AB Apartment Block
1	National (not region specific)	1955	generic	NO.N. SFH.01.Gen	NO.N. TH.01. Gen		NO.N.AB.01.Gen
2	National (not region specific)	1956 1970	generic	NO.N. SFH. 02. Gen	NO.N. TH. 02. Gen		NO.N.AB.02.Gen
3	National (not region specific)	1971 1980	generic	NO.N. SFH. 03. Gen	NO.N. TH. 03. Gen		NO.N.AB.03.Gen
4	National (not region specific)	1981 1990	generic	NO.N.SFH.04.Gen	NO.N. TH. 04. Gen		NO.N.AB.04.Gen
5	National (not region specific)	1991 2000	generic	NO.N. SFH. 05. Gen	NO.N. TH. 05. Gen		NO.N.AB.05.Gen
6	National (not region specific)	2001 2010	generic	NO.N.SFH.06.Gen	NO.N. TH.06. Gen		NO. N. AB. 06. Gen
7	National (not region specific)	2011	generic	NO.N.SFH.07.Gen	NO.N. TH. 07. Gen		NO. N. AB. 07. Gen

Figure 59: Classification scheme ("Building Type Matrix") of the Norwegian residential building typology [Brattebø, O'Born, Sartori, Klinksi, & Nørstebø, 2014]

		SFH	TH	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
		NO.N.SFH.07.Gen	NO.N.TH.07.Gen	-	NO. N. AB. 07. Gen
Number of dwellings		1	2		24
Number of full storeys (conditioned)		2	2		4
Number of directly attached neighbour buildings		0	0		0
National reference area (conditioned floor area, internal dimensions, referring to BRA (bruksareal))	m²	184	198		1608
TABULA reference area (conditioned floor area, internal dimensions)	m²	184	198		1608

Table 135: Exemplary new buildings representing the latest construction year classes (2011 ...)

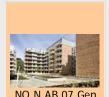
Building example: variants meeting three energy performance levels for new buildings

The following exemplary apartment block is shown in more detail. Information on other exemplary houses in Norway can be found in the national typology brochure for Norway [Brattebø, O'Born, Sartori, Klinksi, & Nørstebø, 2014]. Table 136 shows the energy performance levels by housing element for specific requirements for construction and improvement. There three energy performance requirements included in the TABULA model are as follows:

1. "Minimum Requirements" (Byggteknisk forskrift 2010/TEK10)

A building and energy supply system that complies with the latest enacted requirements for new-built Norwegian housing (TEK10).

2. "Improved Standard" (Passivhus/NS3700)


A building and energy supply system that complies with Norwegian passive house standards (NS3700)

3. "Ambitious Standard/NZEB" (Passivhus + solceller)

A building and energy supply system that meets passive house standards with additional on-site solar energy production (NS3700).

Table 136: Exemplary apartment block (AB) – definition of variants for Norwegian exemplary multi-family house

NO.N.AB.07.Gen

NO.N.AB.07.0	Gen			
Variant N°		001	002	003
Energy Performance Level		Minimum Requirement / TEK10	Improved Standard / Passive house	Ambitious Standard / NZEB
SU-values				
Roof	W/(m²K)	0.14	0.09	0.09
Wall	W/(m²K)	0.22	0.12	0.12
Window	W/(m²K)	1.20	0.80	0.80
Door	W/(m²K)	-	-	-
Floor	W/(m²K)	0.15	0.08	0.08
Thermal bridging supplement (whole envelope)	W/(m²K)	0.03	0.03	0.03
Heat Supply System				
Heat generator			District heating	
Specification / Supplemental system		-	-	-
Ventilation system		TEK10 ventilation system with 70% heat recovery	Passive House ventila- tion system with 85% heat recovery	Passive House ventila- tion system with 85% heat recovery
Thermal solar system		-	-	-
Further system		-	-	Standard PV system, roof mounted

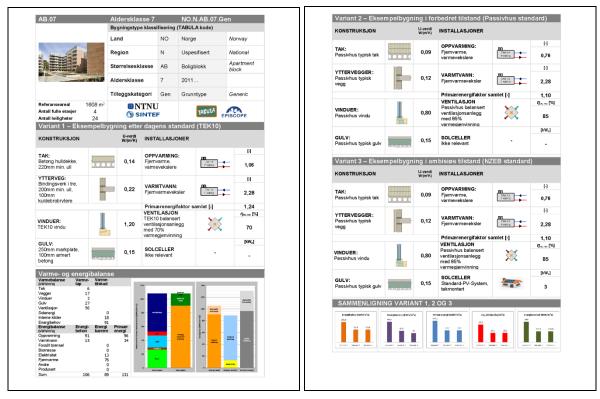


Figure 60: "Building Display Sheet" of the exemplary NO.N.AB.07 from Norwegian residential building typology [Brattebø, O'Born, Sartori, Klinksi, & Nørstebø, 2014]

Table 137 shows the results of the national energy balance for the exemplary apartment building. The delivered and primary energy results do not include the PV system.

E

Table 137: Exemplary AB – Results of the energy balance calculation for "NO.N.AB.07.Gen"; Procedure: NS3031:2007

Variant N°		001	002	003
Label of the variant triplet			"District heating"	
Variation level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB
Energy standard		TEK10	Passive House	NZEB
Calculation method			NS3031:2007+A1:2011	
National reference area*	m²	1608	1608	1608
Thermal transfer coefficient by transmission. related to envelope area	W/(m²K)	0.48	0.23	0.23
Energy need for heating	kWh/(m²a)	91	51	51
Delivered energy				
Fossil fuels	kWh/(m²a)	0	0	0
Renewable fuels	kWh/(m²a)	0	0	0
Electricity	kWh/(m²a)	112	9	9
District heating	kWh/(m²a)	76	40	40
Auxiliary energy	kWh/(m²a)	-	-	-
Primary energy demand	kWh/(m²a)	131	73	73

*) Referring to BRA (Bruksareal)

237

TABULA calculation results for all exemplary buildings

Table 138 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

Table 138:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)
	conditions)

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_n_usap le k///h//m²a/	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out k\/\h/(m²a)	q_del_sum_gas k\\h/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other k\Vh/(m²a)	q_exp_sum_el kWh/(m²a)
SFH	01	Minimum Requirement	1.07	97.6	34.3	63.2	58.0	10.0	19.2	0.0	0.0	0.0	7.5	71.8	0.0	0.0	0.0
	02	Improved Standard	0.71	62.0	31.7	30.3	25.3	10.0	19.2	0.0	0.0	0.0	3.3	33.0	0.0	0.0	0.0
NO.N.SFH.07.Gen ReEx.001	03	Ambitious Standard / NZEB	0.71	62.0	31.7	30.2	27.8	10.0	19.2	0.0	0.0	0.0	3.6	15.6	0.0	0.0	- 19.7
тн	01	Minimum Requirement	1.10	99.6	34.2	65.4	60.2	10.0	19.2	0.0	0.0	0.0	7.8	73.7	0.0	0.0	0.0
	02	Improved Standard	0.72	63.2	31.7	31.5	26.4	10.0	19.2	0.0	0.0	0.0	3.4	33.6	0.0	0.0	0.0
NO.N.TH.07.Gen ReEx.001	03	Ambitious Standard / NZEB	0.72	63.2	31.7	31.5	28.9	10.0	19.2	0.0	0.0	0.0	3.8	16.0	0.0	0.0	- 19.7
AB	01	Minimum Requirement	0.99	90.6	34.9	55.7	52.5	15.0	22.4	0.0	0.0	0.0	0.0	0.0	76.4	0.0	0.0
	02	Improved Standard	0.61	50.8	30.6	20.2	17.2	15.0	22.4	0.0	0.0	0.0	0.0	0.0	40.4	0.0	0.0
ReEX.001	03	Ambitious Standard / NZEB	0.61	50.8	42.7	8.1	17.2	15.0	22.4	0.0	0.0	0.0	0.0	0.0	40.4	0.0	-9.9
	uanti	ties (TABULA Data															
h_Transmission		W/(m ² K) floor area			ster coeff	icient by	transmi	ssion / in	dicator f	or energ	y quality	of build	ing enve	lope (co	mpactne	ss + insi	ulation)
q_h_nd q ve rec h usable		kWh/(m ² a) energy ne kWh/(m ² a) usable co			ation bo	at rocov	Nr.v										
q_ve_rec_n_usable q_h_nd_net			ninbuilon y need fo					isahla)									
q_q_h_out			d heat hea						ISSES + (listributi	on losse	5)					
q_w_nd			y need do				1000 1 3	iorage lu	5363 F L	nounouli	0110330	7)					
q_q_w_nu			d heat dhy				age loss	es + dist	ribution	losses)							
q_del_sum_gas,oi coal,bio,, _ dh,other, q_exp_sum_el	il, _el,	kWh/(m²a) sum delix kWh/(m²a) sum prod	ered ener	gy, ener	gy carrie	er gas, oi	0				t heating	j, other e	energy ca	arriers			

PE

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[Brattebø, O'Born, Sartori, Klinksi, & Nørstebø, 2014]	Brattebø, H., O'Born, R., Sartori, I., Klinksi, M., & Nørstebø, B. (2014). Typologier for norske boligbygg. Trondheim: EPISCOPE.	Tabula typology brochures for Norway
[Buildings Performance Institute Europe, 2011]	Buildings Performance Institute Europe. (2011). Principles for nearly zero-energy buildings. Brussels: Buildings Performance Institute Europe.	Nearly Zero Energy Building guidelines for Europe
[Enova, 2012]	Enova. (2012). Potential and barriers study: Energy efficiency improvement in Norwegian buildings (in Norwegian). Oslo: Enova.	Potentials and barrier study of Norwegian housing
[Graabak & Feilberg, 2011]	Graabak, I., & Feilberg, N. (2011). CO2 emissions in a different scenarios of electricity generation in Europe. Trondheim: SINTEF Energy Research.	Report on CO2 from future European energy scenarios
[Kommunal- og moderniseringsdepartementet, 2010]	Kommunal- og moderniseringsdepartementet. (2010). Forskrift om tekniske krav til byggverk (Byggteknisk forskrift). Oslo: Norwegian Government and Modernisa- tion Department. Retrieved from http://lovdata.no/dokument/SF/forskrift/2010-03-26-489	TEK10 Standard for new build- ings
[Kommunal- og regionaldepartementet, 2012]	Kommunal- og regionaldepartementet. (2012). Gode bygg for eit betre samfunn. Oslo: Norwegian Parliament. Retrieved from http://www.regjeringen.no/nn/dep/kmd/Dokument/proposi sjonar-og-meldingar/stortingsmeldingar/2011-2012/meld- st-28-20112012.html?id=685179	Laws and recommendations regarding future building politics in Norway
[Lien, 2013]	Lien, K. (2013). CO2 emissions from Biofuels and District Heating. Oslo: SINTEF Academic Press.	Report of CO2 from biofuels and district heating in Norway
[Salom, Widen, Candanedo, Sartori, Voss, & Marszal, 2011]	Salom, J., Widen, J., Candanedo, J., Sartori, I., Voss, K., & Marszal, A. (2011). Understanding Net Zero Energy Buildings: Evaluation of load matching and grid interac- tion indicators. Proceedings of Building Simulation 2011 (pp. 2514-2521). Sydney: 12th Conference of Interna- tional Building Performance Simulation Association.	Assessment of NZEB building indicators known as LMGI – Load
[Sartori, Napolitano, & Voss, 2012]	Sartori, I., Napolitano, A. and Voss K., (2012). Net zero energy buildings: A consistent definition frame-work. Energy and Buildings, Vol 48, pp 220-232.	A definition framework on nZEB
[Standard Norge, 2007]	Standard Norge. (2007). Calculation of energy perform- ance of buildings - Method and data. Oslo: Standard Norge.	Calculation methods standard for energy use in buildings
[Standard Norge, 2013]	Standard Norge. (2013). Criteria for passive houses and low energy buildings - Residential buildings. Oslo: Stan- dard Norge.	Passive house standard for Norway

Table 139: Sources / References Norway

3.16 <RS> Serbia

(by associated EPISCOPE partner University of Belgrade)

Several professional and scientific researches have been conducted over the years addressing the built heritage in Serbia but they were more design or social based investigations focused on housing development, achieved standards, design phenomena and architectural qualities.

First attempt to formulate the methodology of structuring the building fund was in 2003, when, at the Faculty of Architecture University of Belgrade, through the national scientific project "Energy optimization of buildings in the context of sustainable architecture", [Jovano-vić Popović 2003] basic principles and key points for investigation were defined. Developed methodology has been tested on the multifamily housing stock of the city of Belgrade. In this research characteristic periods and typical building types were defined with identification of representative buildings but no calculations of energy performance were done.

Research "Energy characteristics of residential building envelopes in Belgrade" [Ignjatović 2012] continued on the same track and broadened the methodology by including the assessment of energy performance both by calculating and on site investigation, including infrared inspection.

By joining the IEE TABULA project work on the typology assessment has continued and resulted in formulation of national residential building typology that has been developed in 2013 [Jovanović Popović 2013]. Typology has been formulated on two tracks: following the common TABULA recommendations and calculation procedures but at the same time respecting the local characteristics and national regulations for calculation of energy performance certificates (EPC).

Nearly zero-energy buildings (NZEB) have not been defined yet in Serbian legislation, nor has the influence of such regulation been anticipated or analyzed.

3.16.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Serbia

Development of legal requirements for the thermal insulation in Serbia has started more than 40 years ago by introduction of first regulations in 1967. In years to follow laws were regularly updated expanding the methodology for calculation. The requirements were followed by the appropriate national standards and calculation procedures [Jovanović Popović 2011].

Table 140:	Comparative review of	f the development of the calcula	ation requirements for buildings
------------	-----------------------	----------------------------------	----------------------------------

			Regulation Adoption Year								
Implementation field	1967	1970	1980	1987	1990	1997/ 98					
Thermal insulation (kr											
Vapour diffusion											
Summer regime	Damping factor of the temperature oscillation amplitude										
Summer regime	Temperature oscillation delays										
Specific heat losses	Building										
	Specific facilities										

Serbia has started the process of harmonization with EU regulations which have resulted in passing of the Law on Planning and Building in 2009. During the process of defining the regulations, it was estimated that the requirements set in EPBD recast are too demanding

and taking into account the situation in Serbia, post war period and economy crisis, the new regulations were based on EPBD Directive from 2002. New Law has presented the need for improving the energy efficiency of building stock and for the first time the term energy performance of building was defined with the obligation of producing the EPC for buildings. For this reason two sub law rulebooks were produced: Rulebook on energy efficiency in buildings (explaining the general procedures and principles for calculation with the list of applicable standards) [Rulebook 2011] and Rulebook on conditions, content and method of issuing energy performance certificates (defining the types of EPCs and procedures for issuance) [Rulebook 2012]. These regulations were adopted starting from 2011 (obligatory from 2012) and are currently under the process of revision and improvement.

In 2013 also the Law on rational use of energy has been passed but without sub-law documents so, for now, it has no direct influence on energy performance of buildings.

NZEB standards are now being considered as the new, logical, step forward in fostering the principles of energy efficiency of buildings and harmonization of legislation with EU. The planned timetable anticipates that by Jan. 2015 national NZEB principles are to be defined (methodology, levels of consumption, economical aspects, implementation principles) and by the Jan. 2016 new sub-law regulations to be produced enabling the implementation.

Minimum requirements for new residential buildings in Serbia

Since the adoption in 2011 all new buildings and those that are in the process of major reconstruction are to be constructed according to the new regulations. The procedure has introduced the "energy efficiency elaborate" as the part of the general design documentation and issuance of EPC as the part of the technical approval. This has made calculation of performance: energy needed for heating as obligatory and energy needed for preparation of hot water, cooling, electrical system and ventilation to be obligatory once the national software for the calculation is adopted. Although calculation of building physics was obligatory according to the previous regulations no calculation of overall consumption has been done. At the same time more stringent values for the performance of elements of thermal envelope have been set. On the other hand calculation of influences of linear and punctual thermal loses which were to be individually calculated and are now simplified and estimated at the rate of 10 % of increase of thermal envelope.

Also influence of local climate has been taken into consideration in much more precise way through introduction of local design temperatures and HDD (heating degree days) values instead of three mayor climatic zones.

Buildings are to meet the designed $Q_{H,nd}$ (energy needed for heating) according to the building type. For the residential buildings values are set: individual housing new 65 kWh/m²a and old 75 kWh/m²a and for multifamily new 60kWh/m²a and old 70 kWh/m²a.

Allowed U values (W/m²K) for some building elements are shown in the table with comparison to the previous standards for the second climatic zone – moderate continental climate:

Table 141: Allowed U values (W/m2K) for some building elements with comparison to the previous stan-	
dards (second climatic zone – moderate continental climate)	

	U value (W/m2K)						
Construction element	Old regulation	New regulation					
	Jus.U.J5.600 (1998)	New construction	Existing buildings				
External wall	0.90	0.30	0.40				
Wall to unheated	0.80	0.40	0.55				
Roof	0.45	0.15	0.20				
Flat roof	0.45	0.15	0.20				
Ground floor	0.90	0.30	0.40				
Windows	3.10	1.50	1.50				
Doors	3.10	1.50	1.50				

<RS> Serbia

Serbian EPC have been issued since the October 2012 based on the calculation principles stated in the EN 13790/2008 and described in the Rulebook on energy efficiency in buildings [Rulebook 2011] and Rulebook on conditions, content and method of issuing energy performance certificates [Rulebook 2012]. Calculation is done for the energy demand for heating and ranking (labelling) is stated according to the ratio comparing to the prescribed value set in the regulations. At the same time all elements of thermal envelope must meet the maximal set values for the U values. National database of EPCs is in the process of establishment and will be governed by the Ministry for construction, transport and infrastructure.

Although rulebook states that other types of used energy are to be calculated in total balance (hot water preparation, electricity, cooling, ventilation) their values are not, for now, influencing the energy grade and calculation is not obligatory before national software is introduced. Date for introducing the national software has not been set and procedure for establishment is unclear.

EPC form also includes data on CO₂ emission and primary energy values (conversion factors are given in the rulebook).

Status of NZEB definition for residential buildings in Serbia

In Serbia there is no national definition of nearly zero energy buildings (NZEBs). Following the current trends of harmonization of national legislative with EU standards EPBD recast directive is considered as the mandatory although levels and impacts were not disused yet. Several research and professional works have tackled the topic trying to define the desirable goals [Jovanović Popović 2014]. Following Serbia's path towards EU by the planned 2020 it actually means that local regulations need to be at the European level and harmonized with present and future directives. If we are to discuss such scenario we can assume that reduction of consumption has to take place every year by the rate of 25 % in order to reach defined levels.

2011-2012	2015-16	2017	2018	2019	2020
Regulations on EE of buildings Regulations on EPC	25 % reduction compared to 2011 48 kWh/m2a	25 % reduction compared to 2015 36 kWh/m2a	25 % reduction compared to 2017 27 kWh/m2a	25 % reduction compared to 2018 20 kWh/m2a	25 % reduction compared to 2019 15 kWh/m2a

Table 142: Possible initiative towards	"nearly zero energy buildings	" for Serbia for new buildings (resi-
dential buildings)		

From the presented table it is obvious that planned improvements are almost unreachable therefore more adequate national strategy needs to be defined. For this reason, it is planned that by the end of 2014, official working group from respected ministries, scientific and professional bodies will be formed and that it will formulate the starting points and methodological frame for national NZEB definition.

Variations of improvement of thermal envelopes and mechanical installations done for the EPISCOPE project can serve as the starting point that will give sufficient data on real potential levels that are achievable and as such can serve as the references for future activities.

Table 143: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Serbia

		C	alculation	Metho	d New	Building R	Regulation	s – (part 1)	
Cou	ntry S	R Se	erbia					Status	08/2014
National Requirements for New Residential Buildings							Special Aspects with regard to the assumed National NZEB Definition		
Legislation / Standards									
Ruleb	ook on energ	y efficien	cy in buildings	s (2011)					
	ook on cond (2012)	litions, coi	ntent and me	thod of is	suing er	ergy performa	ance certifi-		
-	nation / Cor								
on the with E gory o	e energy effic PBD. All nev	iency in b v buildings efurbished	uildings [Rule s should achie d buildings sh	book 201 eve a mar	1], [Rulet datory ra	rdance to the book 2012] in ating of at leas current EPC I	compliance t C cate-		
Ener	gy Servic	es							
x	Heating	x	DHW	App	liances				
	Cooling		Auxiliary	Othe	er:				
	Ventilation		Lighting						
	nation / Cor stic hot wate		ated but does	not influe	ence the i	rating level of	EPC		
Calc	ulation Pr	ocedur	е		Cal	culation period	ł		
x	Calculation (building)	Calculation of energy need for heating (building)				Year / Month			
х	Calculation	n of delive	red energy (s	ystem)		Year			
	nal Systems	-	cial Techr	-	5				
		•	ith heat recov	very					
	Thermal so								
	Other spec	cial system	15:			Delence period	Calfusa		
On-Si	te Electricity	Productio	n	Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹		
	On-site C⊦	IP							
	On-site PV								
	Other ener	gy genera	tion systems:						
	¹ "self use" =	parts of the e	lectricity demand	of the buildin	ig is directly	covered by the pro	oduced electric-		
•	nation / Cor	nments			-				
				0, 0		inalyzed buildi	ng		
••	U-values of building elements								
X		-			Primary				
x	Heat trans transmission		ент ру		energy				
x	Energy ne	ed for hea	ting		Carbon	dioxide emiss	ions		
	Delivered e	energy			Other				
Expla	nation / Cor	nments							
			y demand an e not affecting			missions are o the building	calculated		

Assessment of energy carriers in Serbia

Structure of energy carriers in Serbia is rather diverse with trend of periodical changes of carriers according to the market situation. Historically it can be said that wood fuels have always been in high percentage of use for heating. There is a tendency of reduction of use of oil and derivates for heating and change towards use of natural gas and lately electricity.

<RS> Serbia

If not stated otherwise the figures and data in the following section derive from [SB 658 2013].

Electricity

Total electricity consumption in Serbia was 27 167 GWh, of which 14 517 GWh was used in households. The majority of electricity was produced in thermal power plants (26 885 GWh) and the rest using hydro energy (9914 GWh).

Coal

In households in Serbia, use of sub-bituminuos coal, brown coal and lignite was 486 157 t (total use: 1 265 775 t), and briquettes of brown coal and dry lignite 209 132 t (total use: 399 450 t).

Wood fuels

Firewood is still widespread energy source in households in Serbia (459 608 t of 641 588 t total used in Serbia). Total use of wood briquettes was 25 260 t, and wood pellets 28 365 t.

Oil and oil derivates

Total use of liquid petroleum gas was 361 173 t (for households 262 007 t), unleaded gasoline 415 551 t, diesel 261 078 t, heating oil 261 078 t and fuel oil 216 770 t.

Natural gas

Total use of natural gas was 1 153 920 000 Stm³ (for households 244 243 000 Stm³).

Renewable energy sources

Production of energy from renewable energy sources in Serbia in 2009 was 2.19 Mtoe, and estimated technically feasible unused potential of RES was estimated at 3.83 Mtoe [Bozic et al. 2014].

Energy balance

Based on official statistical data for year 2012, total energy consumption in Serbia was 329.648 TJ (of which for households 102 329 TJ). Breakdown of users is shown in Figure 61.

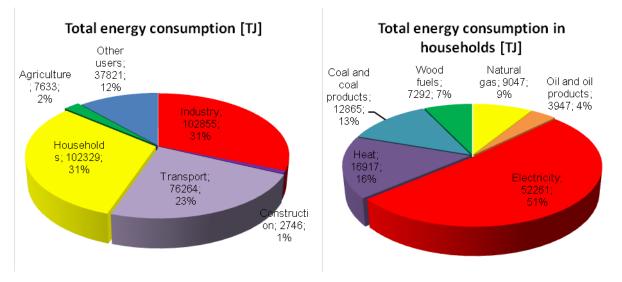


Figure 61: Breakdown of energy carriers for households in Serbia for 2012

Feed-in tariffs for electricity production from renewable energy sources, applied from 1st of January 2014 and valid till 31st of December 2015, are shown in Table 144 [Decree 2013]. The incentive period lasts 12 years. Feed-in tariff depends on the power plant capacity (the smaller incentive capacity, the higher feed-in tariff for each kWh of produced electricity.

Table 144:	Feed-in tariff in	Serbia ((summarized outline)
10010 1111		001010	

ltem No.	Type of power plant	Installed power P (MW)	Feed-in tariff (c€/kWh)
1.	Hydro power plant	up to 30	12.40 - 5.9
2.	Biomass power plant		13.26 - 8.22
3.	Biogas power plant		15.66 – 12.31
4.	Landfill and sewage gas power plant		6.91
5.	Wind power plants		9.20
6.	Solar power plant	up to 0.5	20.66 - 16.25
7.	Geothermal power plants		9.67 - 6.92
8.	Waste fired power plant		8.57
9.	Coal fired co-generation power plant	up to 10	8.04
10.	Gas fired co-generation power plant	up to 10	8.89

Rulebook on Energy efficiency in buildings defines conversion factors for calculating primary energy demands and carbon-dioxide emission factors [Rulebook 2011]. It should be noted that these values are not mandatory used yet, as the national computer program has not been adopted yet, so only energy demands for space are calculated and compared to the prescribed ones.

In the Initial National Communication of the Republic of Serbia, for assessment of CO_2 emission IPCC (Intergovernmental Panel on Climate Change) Tear 1 methodology was used [In. Nat. Com. 2010]. IPCC methodology is much more comprehensive, detailed and accurate [IPCC 1996].

Label / type of factor	Weighting Factor / Primary Energy Factor	CO2 emission factor	
Used for EPC rating	*	*	
Used for building regulations require- ments	*	*	
Label (national language)	Faktor preracunavanja primarne energije (prema: Pravilnik o energetskoj efikas- nosti zgrada, 2011)	Faktor emisije CO ₂ (prema: Pravilnik o energetskoj efikasnosti zgrada, 2011)	
Description / type of weighting factor	Not specified	Not specified	
Factor is multiplied by delivered energy based on	Not specified but probably net calorific value	Not specified but probably net calorific value	
Reference	[Rulebook 2011]	[Rulebook 2011]	
Unit	[-]	[g/kWh]	
Natural Gas E	1.1	200	
Heating Oil	1.2	Fuel oil EL 265 Fuel oil L 280	
Firewood	0.1		
Electricity	2.5	530	
District heating	1.8	330	
District heating with 100 % CHP	1.0		

 Table 145:
 Serbian weighting factors / primary energy and CO2 emission factors

*) not used for EPC rating, nor for building regulations requirements; only provided as illustrative data, does not affect rating of the building

Methodological points for discussion in Serbia

Definition of NZEB in Serbia has to consider economical as well as technical aspects and different scenarios are to be discussed. Implementation possibilities have to be one of the key starting points when establishing the desired levels of consumption and performance of buildings in order to have achievable goals. Methodology also has to take into account specific position in which current construction process is in, and urgent need for improvement of existing building fund which is, in Serbia, renewed by the rate of less than 1 % yearly.

Structure of energy carriers in Serbia is directly influenced by market conditions, where some of the carriers (electricity) is subsidised making it convenient for inappropriate use or not controlled in sustainable manner (wood) therefore it is very hard to establish viable methodology for future NZEB applications.

As district heating system has been vastly developed in Serbia (55 towns with district heating system with total installed capacity of 7000 MW), business association "Heating Serbia" as well as many DH public utilities have an opinion that feed-in tariff, besides electricity production by RES, should be also applied to heat produced by RES in district heating system. The consequence would be significant reduction of GHG emission.

Building engineers have an opinion that intensive building of ZEB (even NZEB) is practically impossible without state subsidies or other credit lines currently unavailable in Serbia.

3.16.2 Integration of National Requirements for New Buildings and NZEB Standards in the Serbian Residential Building Typology

First building typology on national level was developed within the TABULA project in 2013 with concern towards local characteristics and parallel set of calculation done according to the national regulations. These results are now being integrated in new draft that is currently in the process of preparation for the formulation of Strategy of energy development of Serbia by 2015 with projection by 2030.

Classification scheme for the Serbian residential building stock ("Building Type Matrix")

Following the definition of National Building Typology during the IEE project TABULA, according to the methodology defined during the project EPISCOPE, the building matrix was extended towards new buildings, reflecting the current legal requirements [Rulebook 2011].

246 New Buildings in National Residential Building Typologies TABULA

	Region	Construction	Additional	SFH	ТН	MFH	AB
		Year Class	Classification	Single-Family	Terraced House	Multi-Family	Apartment Block
1	National	1918	generic	House	RS.N.TH.01.Gen	House	RS.N.AB.01.Gen
2	National	1919 1945	generic	RS.N.SFH.02.Gen	RS.N.TH.02.Gen	RS.N.MFH.02.Gen	RS.N.AB.02.Gen
3	National	1946 1960	generic	RS.N.SFH.03.Gen	RS.N.TH.03.Gen	RS.N.MFH.03.Gen	RS.N.AB.03.Gen
4	National	1961 1970	generic	RS.N.SFH.04.Gen	RS.N.TH.04.Gen	RS.N.MFH.04.Gen	RS.N.AB.04.Gen
5	National	1971 1980	generic	RS.N.SFH.05.Gen	RS.N.TH.05.Gen	RS.N.MFH.05.Gen	RS.N.AB.05.Gen
6	National	1981 1990	generic	RS.N.SFH.06.Gen	RS.N.TH.06.Gen	RS.N.MFH.06.Gen	RS.N.AB.06.Gen
7	National	1991 2011	generic	RS.N.SFH.07.Gen	RS.N.TH.07.Gen	RS.N.MFH.07.Gen	RS.N.AB.07.Gen
8	National	2012	generic	RS.N.SFH.08.Gen		RS.N.MFH.08.Gen	RS.N.AB.08.Gen

Figure 62: Classification scheme ("Building Type Matrix") of the Serbian residential building typology, now extended towards new buildings

Building Size Class		SFH	TH	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
Picture		RS.N.SFH.08.Gen		RS.N.MFH.08.Gen	RS.N.AB.08.Gen
Number of dwellings		2		27	40
Number of full storeys (conditioned)		3		5	8
Number of directly attached neighbour buildings		0		0	2
National reference area*	m²	342		1124	2345
TABULA reference area (conditioned floor area, internal dimensions)	m²	311		1022	2132

Table 146: Exemplary new buildings representing the latest construction year classes (2012 ...)

*) National reference area is the net conditioned living area enlarged for 10 % to include partition walls, ventilation shafts etc.

Building example: variants meeting three energy performance levels for new buildings

Table 147 shows the building features for different model cases. The three energy performance levels predetermined by the TABULA concept are specified as follows:

Energy Performance levels

- 1. "Minimum Requirements" (compliant with current minimum EPC level for new buildings based on [Rulebook 2011] and [Rulebook 2012];
- 2. **"Improved Standard"** (all elements of thermal envelope are improved by adding insulation, windows and doors are improved to the nearly passivhouse standard level);
- 3. "Ambitious Standard / NZEB" (selected elements of thermal envelope are further improved and windows and doors are improved to the passivhouse standard level).

Three basic types of heat supply systems have been defined, while U-values of thermal envelope remain constant for each level of building thermal insulation (Minimum requirements, Improved standard and NZEB):

• "Biomass " (Variants 01, 02, 03):

Variant 01 heating system is defined as central hydronic system with wood pellet boiler as heat generator, radiator thermostatic valves and variable speed pump. DHW is prepared by heat from pellet fired boiler and supplemental electrical heater. Ventilation system is natural, with exhaust air extraction through ventilation shafts.

Variant 02 heating system is defined as central hydronic system with wood pellet boiler as heat generator, radiator thermostatic valves and variable speed pump. DHW is prepared by heat from pellet fired boiler in winter time, solar thermal system in summer time and supplemental electrical heater. Ventilation system is natural, with exhaust air extraction through ventilation shafts.

For **Variant 03** heating system is defined as 100 % CHP district heating system (wood chips as fuel), radiator thermostatic valves and variable speed pump. DHW is distributed from district heating system. Supplement electrical heater is installed, too. Ventilation system is balanced, with heat recovery device. PV panels system is defined on the roof.

• "Natural Gas " (Variants 11, 12, 13):

Variant 11 heating system is defined as central hydronic system with low temperature gas boiler in cellar. DHW is prepared by heat from gas fired boiler and supplemental electrical heater. Ventilation system is natural, with exhaust air extraction through ventilation shafts.

Variant 12 heating system is defined as low temperature central hydronic system with condensing gas fired boiler in cellar as heat generator. DHW is prepared by heat from gas fired boiler in winter time, solar thermal system in summer time and supplemental electrical heater. Ventilation system is natural, with exhaust air extraction through ventilation shafts.

For **Variant 13** heating system is defined as low temperature central hydronic system with condensing gas fired boiler in cellar and as heat generator. DHW is prepared by heat from gas fired boiler and supplemental electrical heater. Ventilation system is balanced, with heat recovery. PV panels system is defined on the roof.

• "Electricity"(Variants 21, 22, 23):

Variant 21 heating system is defined as air/water heat pump as heat generator. DHW is prepared by heat from heat pump and supplemental electrical heater. Ventilation system is natural, with exhaust air extraction through ventilation shafts.

Variant 22 heating system is defined as ground/water heat pump as heat generator. DHW is prepared by heat from heat pump, solar thermal system and supplemental electrical heater. Ventilation system is natural, with exhaust air extraction through ventilation shafts.

For **Variant 23** heating system is defined as central hydronic system, with ground source heat pump as heat generator. DHW is prepared by heat from heat pump, solar thermal system and supplemental electrical heater. Ventilation system is balanced, with heat recovery. PV panels system is defined on the roof.

RS.N.MFH	.08.Gen		"Biomass'	,	")	Natural Ga	s"	•	"Electricity"		
Variant N°		001	002	003	011	012	013	021	022	023	
Energy Performance Level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	
U-values											
Roof	W/(m²K)	0.14	0.1	0.08	0.14	0.1	0.08	0.14	0.1	0.08	
Wall	W/(m²K)	0.29	0.16	0.11	0.29	0.16	0.11	0.29	0.16	0.11	
Window	W/(m²K)	1.3	0.8	0.5	1.3	0.8	0.5	1.3	0.8	0.5	
Door	W/(m²K)	1.5	0.8	0.8	1.5	0.8	0.8	1.5	0.8	0.8	
Floor	W/(m²K)	0.28	0.16	0.11	0.28	0.16	0.11	0.28	0.16	0.11	
Thermal bridg- ing supplement (whole enve- lope)	W/(m²K)	0.03	0.00	0.00	0.03	0.00	0.00	0.03	0.00	0.00	
Heat Supply S	ystem					1	1		1	1	
Heat generator		wood pe	llet boiler	CHP DH (wood chips)	LT boiler	con- densing boiler	condens- ing boiler	alactrical heat nump			
Specification / Supplemental s	ystem	+electrical heater	+electrical heater	+electrical heater	+electrical heater	+electrical heater	+electrical heater	ext.air +electrical heater	soil +electrical heater	soil +electrical heater	
Ventilation sys	stem	exhaust air	exhaust air	heat recovery	exhaust air	exhaust air	heat recovery	exhaust exhaust heat air air recovery		heat recovery	
Thermal solar	system		DHW			DHW			DHW	DHW	
Further system	า			PV			PV			PV	

250 New Buildings in National Residential Building Typologies TABULA

EPISCOPE

Figure 63: "Building Display Sheet" of the exemplary MFH

Table 148: Exemplary MFH – Results of the energy balance calculation; Procedure: Serbian EPC calculation tion procedure [Rulebook 2011]

251

Variant N°		011	012	013			
Label of the variant triplet			"Natural Gas"				
Variation level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB			
Energy standard		Rulebook (2011)					
Calculation method		Serbian EPC ca	alculation procedure	[Rulebook 2011]			
Heated area (net conditioned area)	m²		bian EPC calculation procedure [Rulebook 2011] 1082 535 0.342 0.273				
Thermal transfer coefficient by transmission. related to envelope area	W/(m²K)	0.535	0.342	0.273			
Relation to requirement		100%	65%	52%			
EPC rating		С	С	В			
Energy need for heating	kWh/(m²a)	59.65	37.53	28.91			
Delivered energy	kWh/(m²a)	69	38	30			
Primary energy demand	kWh/(m²a)	76	41.7	32.15			
CO ₂ Emissions	kg/(m²a)	15.2	8.6	6.6			

TABULA calculation results for all exemplary buildings

Table 149 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

conditions)																		
Building	Var. N°	Performance	Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
	01	Minimum Requiren		0.74	56	0	56	55	10	19	0	0	0	77	15	0	0	0
	02	Improved Standard		0.46	39	0	39	38	10	19	0	0	0	56	8	0	0	0
SFH	03	Ambitiou Standard		0.31	31	20	11	13	10	20	0	0	0	0	7	38	0	-32
	11	Minimum Requiren		0.74	56	0	56	55	10	19	79	0	0	0	14	0	0	0
	12	Improved		0.46	39	0	39	38	10	19	51	0	0	0	7	0	0	0
RS.N.SFH.08.Gen	13	Ambitiou Standard		0.31	31	0	31	30	10	19	42	0	0	0	14	0	0	-27
ReEx.001	21	Minimum Requiren		0.74	56	0	56	55	10	19	0	0	0	0	37	0	0	0
	22	Improved		0.46	39	0	39	38	10	19	0	0	0	0	21	0	0	0
	23	Ambitiou Standard		0.31	31	20	11	11	10	19	0	0	0	0	15	0	0	-27
	01	Minimum Requiren		0.95	67	0	67	66	15	24	0	0	0	93	18	0	0	0
	02	Improved Standard	ł	0.50	43	0	43	42	15	24	0	0	0	64	9	0	0	0
MFH	03	Ambitiou Standard	s	0.35	32	20	12	14	15	25	0	0	0	0	8	45	0	-23
	11	Minimum Requiren	1	0.95	67	0	67	66	15	24	96	0	0	0	17	0	0	0
	12	Improved Standard	ł	0.50	43	0	43	42	15	24	58	0	0	0	7	0	0	0
	13	Ambitiou Standard	s	0.35	32	0	32	31	15	24	45	0	0	0	17	0	0	-18
RS.N.MFH.08.Gen ReEx.001	21	Minimum Requiren		0.95	67	0	67	66	15	24	0	0	0	0	44	0	0	0
	22	Improved Standard	ł	0.50	43	0	43	42	15	24	0	0	0	0	23	0	0	0
	23	Ambitiou Standard		0.35	32	19	12	12	15	24	0	0	0	0	16	0	0	-18
	01		Minimum Requirement		55	0	55	54	15	24	0	0	0	78	18	0	0	0
	02	Improved Standard		0.39	36	0	36	35	15	24	0	0	0	56	9	0	0	0
AB	03	Ambitiou Standard		0.27	29	19	9	12	15	25	0	0	0	0	8	42	0	-22
	11	Minimum Requiren		0.74	55	0	55	54	15	24	80	0	0	0	17	0	0	0
	12	Improved		0.39	36	0	36	35	15	24	50	0	0	0	7	0	0	0
RON AR OR OWN	13	Ambitiou Standard		0.27	29	0	29	28	15	24	43	0	0	0	17	0	0	-17
RS.N.AB.08.Gen ReEx.001	21	Minimum Requiren		0.74	55	0	55	54	15	24	0	0	0	0	40	0	0	0
	22	Improved		0.39	36	0	36	35	15	24	0	0	0	0	21	0	0	0
	23	Ambitiou Standard	s	0.27	29	19	10	10	15	24	0	0	0	0	16	0	0	-17
Explanation of Quan h_Transmission q_h_nd q_ve_rec_h_usable q_h_nd_net q_g_h_out q_w_nd q_g_w_out q_del_sum_gas,o				ed for heat tribution o need for I heat heati need dom	ing f ventilat neating (ng syste nestic ho	tion heat q_h_nd m (net e t water	recover - q_ve_r nergy ne	y ec_h_us eed + sto	able) prage los	ses + di	stributio			ng envelo	ope (con	npactnes	s + insu	lation)
	el,	kWh/(m²a)	sum delive	red energ	y, energy	y carrier	gas, oil,	coal, bio	omass, e	lectricity	, district	heating,	other er	nergy cai	riers			

 Table 149: Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)

 q_exp_sum_el
 kWh/(m²a)

3.16.3 Sources / References Serbia

Table 150: Sources / References Serbia

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[Bozic 2014]	Bozic V., Cvetkovic S., Zivkovic B., 2014: Influence of renewable energy sources on climate change mitigation in the Republic of Serbia, Thermal Science Journal doi: 10.2298/TSCI 130221047B	
[Decree A 2013]	Uredba o načinu obračuna I načinu raspodele prikupljenih sredstava po osnovu naknade za podsticaj povlašćenih proizvođača električne energije, The Official Gazette of Republic of Serbia No. 8/2013	Decree on incentive measures for privi- leged power producers, 2013
[Decree B 2013]	Uredba o merama podsticaja za povlašćene proizvođače električne energije, RS Official Gazette No. 8/2013	Decree on incentive measures for privi- leged power producers, 2013
[Ignjatović 2012]	Ignjatović D., Ćuković Ignjatović N., Stanković B., Mraović A., 2012: Atlas energetskih karakteristika omotača građevinskih objekata u Beogradu, Belgrade Faculy of Architecture University of Belgrade	Scientific project, Investigation of Bel- grade building stock. Energy performance assessment and on site investigation
[In. Nat. Com. 2010]	Initial National Communication of the Republic of Serbia under the United Nations Framework Convention on Cli- mate Change (UNFCCC), The Ministry of Environment and Spatial Planning, November 2010	
[IPCC 1996]	IPCC Guidelines for national GHG inventories, 1966, Geneva, Switzerland	
[Jovanović Popović 2003]	Jovanović Popović, M., Ignjatović, D., Ristivojević Miha- jlović M., Krstić A., Ćosić G., Dimić, S., Slavković, S., Radi- vojević, A., Đokić, L., 2003: Energetska optimizacija zgrada u kontekstu održive arhitekture: Analiza strukture građevinskog fonda Belgrade: Faculty of Architecture University of Belgrade,	Scientific project: Energy optimization of buildings in context of sustainable archi- tecture", part 1: Analysis of structure of building stock
[Jovanović Popović 2011]	Jovanović Popović, M., Ignjatović, D., Radivojević, A., Rajčić, A., Đukanović, Lj., Čuković Ignjatović, N., Nedić, M., 2011: Assessment of Energy Performances of the Serbian Building Stock, Belgrade, Faculty of Architecture Univesity of Belgrade	Scientific study
[Jovanović Popović A 2013]	Jovanović Popović, M., Ignjatović, D., Radivojević, A., Rajčić, A., Đukanović, Lj., Čuković Ignjatović, N., Nedić, M. 2013: Nacionalna tipologija stambenih zgrada Srbije. Belgrade: Faculty of Architecture University of Belgrade, GIZ.	National typology of residential buildings in Serbia
[Jovanović Popović 2014]	Jovanović Popović, M., Stanković, B., Kavran, J. 2014: Strategy for national definition of Nearly Zero Energy Build- ings. Proceedings of First International Academic Confer- ence on Places and Technologies, Faculty of Architecture University of Belgrade, pp. 621-628.	Strategy for national definition of Nearly Zero Energy Buildings
[Rulebook 2011]	Pravilnik o energetskoj efikasnosti zgrada, The Official Gazette of Republic of Serbia No. 61/2011	Rulebook on energy efficiency in build- ings
[Rulebook 2012]	Pravilnik o uslovima, sadržini i načinu izdavanja sertifikata o energetskim svojstvima zgrada, The Official Gazette of Republic of Serbia No. 69/2012	Rulebook on conditions, content and method of issuing energy performance certificates
[SB 568 2013]	Energy Balance 2012, Bulletin 568, Statistical Office of the Republic of Serbia, Belgrade, 2013	

3.17 <SI> Slovenia

(by EPISCOPE partner ZRMK)

Several attempts of assembling building typologies have been conducted in the past. The first professional study was carried out in the mid-90 [Bostjancic et al. 1993]. Study was concentrated on energy restoration of buildings. Afterwards, two more were made - building typology that is used for statistical purposes and one more that is used for CO2 scenarios. The latter is composed by only 2 types of construction (single family houses and apartment building) and multiple years of construction classes which correspond to energy efficiency levels. Not one of these tree typologies involves building systems. Building typologies in the Slovenian residential buildings have been made in the past, but were all adapted to certain purpose (renovations, emission scenarios, etc.). Until IEE TABULA, Slovenia did not have a typology that comprehensively structured the residential building stock.

The definition of nearly zero-energy buildings (nZEB) has not yet been defined, but draft criteria have already been reported in the national plan for the increase of nZE buildings.

3.17.1 Current Legal Requirements and Status of National NZEB Definition for Residential Buildings in Slovenia

Since the first thermal regulation became law in 1970, several tightenings and changes of the new legal requirements for new buildings took place. The latest regulation PURES 2010 came into force in 2010. As a next step towards nearly zero-energy buildings, it includes a tightening of the requirements for new buildings already in 2015.

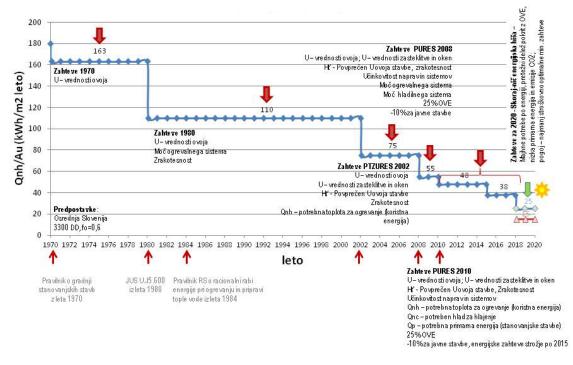


Figure 64: Overview of the tightening prescribed minimum requirements for the energy performance of buildings in Slovenia and increasing complexity of minimum requirements

Minimum requirements for new residential buildings in Slovenia

Based on the EPBD Recast Slovenia adopted the Regulations on Energy Efficiency in Buildings (PURES 2010) June 2010, which introduces a methodology for the calculation of indicators of the energy performance of the building in accordance with the EPBD CEN standards or SIST EN ISO 13790. It provides minimum requirements for the energy performance of new buildings and major renovation of existing buildings, lays down minimum requirements in the event of maintenance and technical improvements (before the end of the life of each individual element of the system and subsystem building). Regulation PURES 2010 prescribed up to 10 % more stringent requirements for all public buildings.

An important novelty is the requirement of at least 25 % share of renewable sources in total final energy consumption for the operation of (all) systems in the building, which is regarded as fulfilled in the following cases:

- if the share of final energy consumption for heating and cooling buildings and hot water in-obtained one of the following ways:
 - o at least 25 percent of solar radiation,
 - o at least 30 percent of the gaseous biomass,
 - o at least 50 percent of solid biomass,
 - o at least 70 percent from geothermal energy,
 - o at least 50 percent of ambient heat,
 - at least 50 percent of CHP plants with high efficiency in accordance with the regulations, which regulates the supporting electricity produced by cogeneration of heat and electricity with high efficiency,
 - the building is at least 50 percent supplied from the energy-efficient district heating and cooling.
- or if it is necessary energy need for heating at least 30 percent lower than the minimum requirements allow
- building or dwelling if it is installed at least 6 m2 (bright areas) hair-tion of solar energy with an annual yield of 500 kWh / (m2a).

PURES 2010 sets strict minimum requirements for thermal protection of the building envelope and for the maximum heat for the heating of the buildings. Together with the prescribed 25 % share of renewable sources in total final energy consumption for the operation of the systems in the building and technical requirements for systems (condensing gas boilers required for the COP of the heat pump required efficiency systems for the recovery ventilation, mandatory in-law hot water systems for renewables) is a key part of the minimum requirements for energy-efficient buildings. The primary energy for heating and cooling is quite limited and its tightening is foreseen in the next PURES 2015 Regulation.

Slovenian calculation method to comply with new building regulations for residential buildings

Depending on the type of building and the purpose of its use, there are two types of energy performance certificates:

- Calculating energy performance certificate, which shall be determined on the basis of the calculated energy indicators of energy use of the building. Calculating energy performance certificate is issued for newly constructed buildings and existing residential buildings;
- (2) Measured energy performance certificate, which shall be determined on the basis of measurement of energy. Measured energy performance certificate is issued to existing non-residential buildings.

Notwithstanding the preceding paragraph, instead of the measured energy performance certificate issued by calculating the energy performance certificate, if an independent expert determines that the data on the actual energy consumption are not reliable.

<SI> Slovenia

National: Metodologija za izračun energijskih lastnosti stavbe + TSG-1-004:2010

English: Methodology for calculating energy performance of buildings + Technical guideline for construction: TSG-1-004:2010 efficient use of energy

Energy efficiency indicators for the construction of the building energy performance certificate shall be determined on the basis of the calculation methodology that is based on the standard EN ISO 13790, with appropriate adjustments and is included in "Methodology for calculating energy performance of buildings". This methodology consists of a complete scheme for the calculation of residential buildings and includes calculation modules for heating, cooling, air-conditioning and a ventilation system. The calculation procedure and the conversion factors for the calculation of primary energy are described in Technical guideline for construction: TSG-1-004:2010 efficient use of energy.

Energy efficiency indicators for the measured energy performance certificate shall be determined on the basis of the measured values of energy consumption during the last three completed calendar years preceding the year of manufacture energy performance certificate, in accordance with the SIST prEN 15603 section 7.1. If the data on the energy consumed for the last three years are not available, use data for the last two or the last complete calendar year preceding the year of manufacture cards. Data on energy consumption shall be determined on the basis of energy consumption bills or other appropriate records for each fuel source. These data should provide contracting energy performance certificate.

Status of NZEB definition for residential buildings in Slovenia

In the draft of technical minimum requirements for nearly zero-energy building tightening of minimum requirements regarding the maximum allowable needs for heating, cooling or air conditioning, hot water and lighting in the building are foreseen. As well as an increase in headline share of renewable energy in total energy consumption for the operation of the building.

If the maximum permitted heat required to heat the building in the event of a family house with a shape factor (envelope / volume) of 0.6 according to the requirements PURES 2010 (**Fehler! Verweisquelle konnte nicht gefunden werden.**) by the end of 2014 is limited to 48 kWh/m2a and this restriction starting in 2015 reduced to 38 kWh/m2a with the introduction of minimum requirements for nearly zero-energy building provides an additional reduction of the maximum required heat for the building:

- 25 kWh/m2a, with the limitation of primary energy can be met only with a significantly higher actual share of renewable energy (expected to increase from 25 % to 50 %) in the total final energy consumption for the operation of the systems in the building;
- On 15 kWh/m2 per year, if the use of renewable energy sources at the site of the building there is insufficient technical possibilities.

The above values are, as already prescribed in the applicable regulations PURES 2010 makes sense to adapt, taking into account climatic characteristics at the site of the building and the form factor of the building.

The nearly zero energy buildings are starting from the study of cost-optimal minimum requirements provided (draft submitted to the Scientific Council of the Ministry) [NR COL 2014] the following maximum allowable values for primary energy:

Type of building	Maximum allowed value of primary energy (kWh/m2a)						
Type of building	New Build	Major renovations					
Single-family building	50	90					
Multi-family building	45	70					
Non-residential building*	70	100					

Table 151: Maximum value of primary energy per type of building (draft)

* based on analysis of cost-optimal level of office buildings, as most targeted group of non-residential buildings

The value of primary energy will be nearly zero-energy buildings can be achieved by increasing the share of local renewable energy sources with the following techniques described below.

District heating systems with biomass as fuel, the systems for the conversion of energy in controlled emissions mainly in urban and geographically unfavourable densely populated areas effectively reduce primary energy use while raising the level of local energy self-sufficiency in comparison with other energy products. Systems or cogeneration, polygeneration are best suited for transformation of biomass (potentially waste) into thermal energy with high efficiency of local energy resources while increasing the share of renewables in the national electricity system without burdening the environment with emissions of particulate matter and other emissions, and the more local influences such as nitrogen and sulfur oxides. Exceptionally, in the suburban and less populated areas may also be individual biomass boilers represent a significant contribution to the reduction of primary energy consumption.

Irrespective of the location are in reducing primary energy consumption for heating nearly zero-energy buildings suitable heat pumps that use a high share of RES in its operations. Thus, coefficient of performance (COP), as the share of renewables in electricity production in the national electricity sector have a significant impact on the share of renewable energy sources used by the heat pump in its operations. In 2012, the share of RES in Slovenia for electricity production was 31.4 %, which means that the heat pump with a COP of 3.5 exploits 80.4 % renewables and 19.6 % of non-renewable sources of energy for their operation. This represents approximately 35 % less primary energy for the same volume of heat than comparable systems on oil or gas. Achieving the objective in 2020 with 39.3 % share of RES in the national electricity system will mean that the same heat pump used 82.7 % of its energy from renewable sources for its operation.

Some other systems that are more dependent on natural variations in weather conditions (solar panels, solar power) are in the case of own use in nearly zero-energy buildings also suitable for improving the balance of primary energy, their value lies mainly in the economic and technical accessibility of individuals to technologies that can contribute to nature-friendly lifestyle.

Upon final approval of the minimum requirements for nearly zero-energy building is essential to ensure the consistency of standard profiles use buildings with the emerging new generation of CEN EPBD standards, re-examine the areas of energy involved in determining energy indicators (in Slovenia in residential buildings also consider the use of energy for lighting), to examine how the computation renewable sources produced on the building / with her / near the building. In approving the technical definition of nearly zero energy buildings is also important to revise the conversion factors for the calculation of primary energy.

Table 152: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Slovenia

					wietho	unew	Building R	eguiation	s – (part 1)		
Count	ry S	SI	Slo	venia					Status	07/2014	
Nation	nal Requ	uirem	ents	s for New	Reside	ential E	Buildings		Special Aspector to the assume NZEB Definition	d Slovenian	
Legisl	ation / S	Stanc	lards	6					No official Slovenia		
Regulati	ion on the	metho	dolog		ing and is	ssuing er	/2010, 30.06.2 hergy performa		until now. The NZEB standard will presumably be determined on the ba of primary energy and heat transfer coefficient by transmission.		
Methodo		alculat		nergy perfornuction: TSG-			s nt use of ener	ду			
The curr regulation gent req	on is sche juirements	of requ duled i s for he	ireme n 201 at tra	5 and for res	sidential of	dwellings	10. Next tighte will result in m on, energy nee	ore strin-			
	y Servi		printe	i y onorgy.					Appliances and lig	nting are included as	
						liances			a part of internal ga	ains.	
	Cooling			Auxiliary	Othe						
x	Ventilatio	n		Lighting							
•	ation / Co systems a			ot installed i	n Sloven	ian reside	ential buildings	i.			
Calcul	lation P	roced	dure			Cal	culation period				
	Calculatic (building)	on of er	nergy	need for hea	ating		Month				
x	Calculatio	on of de	elivere	ed energy (s	ystem)		Year / Mo	nth			
Explana	ation / Co	mmen	ts								
	deratio I Systems	n of S	Spec	ial Techn	ologie	S					
	-	n syste	m witl	n heat recov	ery						
x	Thermal s	olar sy	stem								
(Other spe	cial sys	stems	:							
On-Site	Electricity	Produ	iction		Feed-in	Self-use ¹	Balance period to determine self-use ¹	Self-use considered for H-C-W-HE ¹			
x	On-site Cl	HP			x						
x (On-site P	V				х	Month	H-C-W			
(Other ene	rgy ge	nerati	on systems:							
1	¹ "self use" = ity: self use	parts of	the electric the	ctricity demand o	of the buildir ating - Cooli	ng is directly	covered by the pro	duced electric-			
Explana	ation / Co				5 220	5					
Туре с	of Requ	ireme	ents	(new bui	ldings)						
	U-values			•							
	Heat trans transmiss		efficie	nt by	х	Primary energy	non-renew	able			
x	Energy ne	ed for	heatii	ng		Carbon	dioxide emiss	ions			
1	Delivered	energy	/		x	Other	energy neo	ed for			
Evolana	ation / Co	mmen	ts				U				

Assessment of energy carriers in Slovenia

Tabled values of total primary energy factors are published in Technical guideline of energy efficient use [TSG-1-004:2010]. As it stands, at the moment the non-renewable primary energy factor are not yet specified in any regulation. They can be obtained from the energy supplier only for informational purposes only.

For electricity production Slovenia uses all forms of primary energy and resources. Dominant share of electricity is produced in conventional power plants (thermal, hydro and nuclear power); share of production, connected to the distribution network in 2011 amounted to more than six percent of total production (Table 153).

Table 153: Shares of different types of electricity production in Slovenia 2011 [Javna agencija RS za energijo 2012]

Type of production	Production GWh	Share %
Nuclear power plant	5,902	39.00
Thermal power plant	4,916	32.50
Hydro power plant	3,420	22.60
Other small producers (transmission network)	497	0.60
Other small producers (in the distribution network)	803	5.30
Total	15,137	100.00

On-site photovoltaics systems are considered in the primary energy demand of the EPC in the extent that the calculated monthly electrical energy demand for heating, DHW and auxiliary energy is directly covered.

Table 154: Slovenian primary energy factors

Label / type of factor	Primary Energy Factors Slovenia
Used for EPC rating	x
Used for building regulations requirements	x
Label (national language)	Tehnična smernica za graditev TSG-1-004:2010 Učinkovita raba energije
Description / type of weighting factor	non-renewable energy amounts, includes upstream energy ex- penditures (transportation, transformation) beyond national boundary
Factor is multiplied by delivered energy based on the	net calorific value
Reference	[TSG-01-004:2010]
Natural gas	1.1
Heating oil	1.1
Firewood	0.1
Wood pellets	0.1
Electricity	2.5
Electricity production CHP	0
Electricity production PV system	0
District heating	1.2
District heating without CHP	0.1
District heating with 100 % CHP	1

Methodological points for discussion in Slovenia

The most relevant discussion points are:

Total primary energy factors (renewable energy):

There has been no assessment so far on this matter. In the future an extensive research is expected on the matter of defining and calculating total (renewable + non-renewable) primary energy.

• Biomass:

A new expert evaluation of biomass total primary energy factor is needed.

• PV:

The general use of PV is yet to be discussed. Since the start of economical crisis there has been no financial support scheme for PVs and since then the number of new installed systems strongly decreased. Besides this, a fire safety of such systems is a big issue on this matter.

3.17.2 Integration of National Requirements for New Buildings and NZEB Standards in the Slovenian Residential Building Typology

Modern design trends typology of buildings includes a wide range of building's indicators, such as geometrical, structural and energy. In the past, several attempts of building typologies have already emerged, which were used for different purposes - checking energy refurbishment, statistical categorization of buildings and verifying emissions of carbon dioxide. Among the most important was the middle of the 90's a study, which is concentrated on energy refurbishment of buildings [Boštjančič, J., Brezar, V., Zupancic, D. 1993].

During the TABULA project the differentiated national version of the classification scheme ("building type matrix") was transformed into the common TABULA concept [ZRMK 2011]. The datasets of existing buildings were adjusted and transferred to the TABULA data structure. The existing set of construction pictures was improved and supplemented by a large number of further construction and measure types [ZRMK 2012].

Classification scheme for the Slovenian residential building stock ("Building Type Matrix")

During the IEE project EPISCOPE the building type matrix was extended towards new buildings, reflecting the current legal requirements [PURES 2010]. Figure 65 shows the respective matrix. Three further example buildings have been identified which are now used for showcase calculations reflecting possible practical implementations of new buildings according to the national minimum requirements and future NZEB standards.

262 New Buildings in National Residential Building Typologies TABULA

	Region	Construction	Additional	SFH	ТН	MFH	AB
		Year Class	Classification	Single-Family House	Terraced House	Multi-Family House	Apartment Block
1	national (Slovenija)	1945	generic (Tipična)	House	SI.N.TH.01.Gen	SI.N.MFH.01.Gen	SI.N.AB.01.Gen
2	national (Slovenija)	1946 1970	generic (Tipična)	SI.N.SFH.02.Gen	SI.N.TH.02.Gen	SI.N.MFH.02.Gen	SI.N.AB.02.Gen
3	national (Slovenija)	1971 1980	generic (Tipična)	SI.N.SFH.03.Gen	SI.N.TH.03.Gen	SI.N.MFH.03.Gen	SI.N.AB.03.Gen
4	national (Slovenija)	1981 2001	generic (Tipična)	SI.N.SFH.04.Gen	SI.N.TH.04.Gen	SI.N.MFH.04.Gen	SI.N.AB.04.Gen
5	national (Slovenija)	2002 2008	generic (Tipična)	SI.N.SFH.05.Gen	SI.N.TH.05.Gen	SI.N.MFH.05.Gen	SI.N.AB.05.Gen
6	national (Slovenija)	2009	generic (Tipična)	SI.N.SFH.06.Gen	SI.N.TH.06.Gen	SI. N. MFH. 06. Gen	SI. N. AB. 06. Gen

Figure 65: Classification scheme ("Building Type Matrix") of the Slovenian residential building typology [ZRMK 2014], now extended towards new buildings

Table 155: Exemplary new buildings representing the latest construction year classes (2009
--

		SFH	тн	MFH	AB
		Single-Family House	Terraced House	Multi-Family House	Apartment Block
Number of dwellings		1	1	5	75
Number of full storeys (conditioned)		2	2	4	13
Number of directly attached neighbour buildings		0	2	0	0
National reference area*	m²	287	188	1851	6066
TABULA reference area (conditioned floor area, internal dimensions)	m²	287	188	1851	6066

*) "Conditioned floor area" is the floor area of the spaces with controlled conditions excluding non-habitable basement or other non-residential spaces, includes a floor area of all floors, if there is more than one [TSG-1-004:2010]

Building example: variants meeting three energy performance levels for new buildings

<SI> Slovenia

In the following the exemplary single-family house is demonstrated in more detail. Comparable information for the other buildings can be found in the updated national typology brochure [ZRMK 2014] and the underlying work report [ZRMK 2012].

Table 156 shows the building features for different model cases. The three energy performance levels predetermined by the TABULA concept are specified as follows:

Energy Performance levels

- "Minimum Requirements" ("PURES 2010") Combination of building and supply system that exactly complies with the current minimum requirements [PURES 2010].
- **2. "Improved Standard" ("PURES 2015")** Level of "PURES 2015" that tightens the requirements of the current Regulation.
- 3. "Ambitious Standard / NZEB" ("National reports on calculation of cost-optimal levels of minimum energy performance requirements") Level of "NZEB", the most ambitious of the three standards funded by the national grant programme, which was set by "National plan for nearly zero-energy buildings for Slovenia"

programme, which was set by "National plan for nearly zero-energy buildings for Slovenia" [NP NZEB 2014]. This is attained by U-values of typical passive houses and a heat supply system with an utmost fraction of renewables.

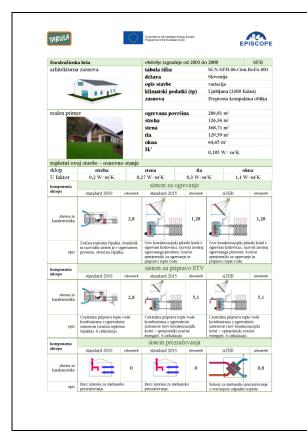
Three basic types of heat supply systems have been defined:

• "Combination1"(Variants 01, 02, 03):

The U-values of variants 01, 02 and 03 are set according to the energy performance level, where the values of NZEB levels are typical for passive houses. Heating systems are considered as low-cost investments and a ventilation system is used only where obligatory - for achieving the NZEB standards.

• "Combination2"(Variants 11, 12, 13):

The U-values of variants 11, 12 and 13 are set according to the energy performance level, where the values of NZEB levels are typical for passive houses. For minimum requirements the heat supply is provided by a heat pump, the next two levels (improved and ambitious) explore the possibility of implementing a condensing gas boiler.


• "Electricity"(Variants 21, 22, 23):

The U-values of variants 11, 12 and 13 are set according to the energy performance level, where the values of NZEB levels are typical for passive houses. The supply system consists in all variants of an electrical heat pump, in case of Variants 21 and 22 with external air as heat source and as ground source in Variant 23. The latter is furthermore equipped with a ventilation system.

		"Ci	ombinatio	n1"	"C	ombinatio	n2"		"Electricity"		
Variant N°		001	002	003	011	012	013	021	022	023	
Energy Performance Level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	
U-values											
Roof	W/(m²K)	0.20	0.17	0.10	0.20	0.17	0.10	0.20	0.17	0.10	
Wall	W/(m²K)	0.27	0.20	0.10	0.27	0.20	0.10	0.27	0.20	0.10	
Window	W/(m²K)	1.10	0.75	0.75	1.10	0.75	0.75	1.10	0.75	0.75	
door	W/(m²K)	1.10	0.84	0.84	1.10	0.84	0.84	1.10	0.84	0.84	
Floor	W/(m²K)	0.28	0.17	0.17	0.28	0.17	0.17	0.28	0.17	0.17	
Thermal bridg- ing supplement (whole enve- lope)	W/(m²K)	0.10	0.05	0.02	0.10	0.05	0.02	0.10	0.05	0.02	
Heat Supply Sy	ystem			1		1					
Heat generator		condensing boiler	LT boiler	condensing boiler	electrical heat pump	condensing boiler	condensing boiler	ele	ectrical heat pu	mp	
Specification / Supplemental s	Specification / Supplemental system				external air			external air	soil	soil	
Ventilation sys	stem	exhaust air	exhaust air	heat recovery	exhaust air	exhaust air	heat recovery	exhaust air	exhaust air	heat recovery	
Thermal solar	system	-	-	DHW	-	DWH	DHW	-	-	DHW	

Table 156: Exemplary single-family house (SFH) – definition of variants

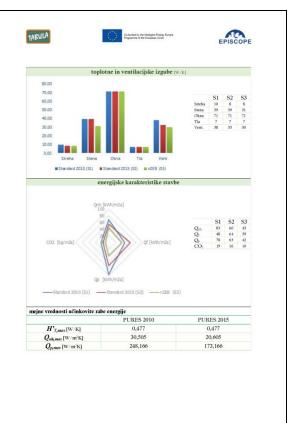


Figure 66: "Building Display Sheet" of the exemplary SFH <SI> [ZRMK 2014]

Variant N°		001	002	003	011	012	013	021	022	023	
Label of the variant triplet			"Combination	1"	"	Combination2	2"	"Electricity"			
Variation level		Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	Minimum Require- ment	Improved Standard	Ambitious Standard / NZEB	
Energy standard	PURES 2010	PURES 2015	NP NZEB	PURES 2010	PURES 2015	NP NZEB	PURES 2010	PURES 2015	NP NZEB		
Calculation method					PURES 2	2010 + TSG-1	-004:2010				
National reference area*	m²	287.0	287.0	287.0	287.0	287.0	287.0	287.0	287.0	287.0	
Thermal transfer coeffi- cient by transmission. related to envelope area	W/(m²K)	0.409	0.274	0.178	0.409	0.274	0.178	0.409	0.274	0.178	
Relation to requirement		91%	61%	40%	91%	61%	40%	91%	61%	40%	
Energy need for heating	kWh/(m²a)	83.21	60.93	43.29	83.21	60.93	43.29	83.21	60.93	43.29	
Delivered energy											
Fossil fuels	kWh/(m²a)	114.0	104.3	0.0	0.0	55.0	47.0	0.0	0.0	0.0	
Electricity	kWh/(m²a)	4.0	0.0	45.4	37.6	4.5	6.6	31.2	26.1	16.9	
Auxiliary energy	kWh/(m²a)	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	
Primary energy demand	kWh/(m²a)	129.8	133.4	113.6	94.0	69.1	77.5	78.1	65.3	42.3	
CO2 emissions	kg/(m²a)	34.1	42.5	28.0	23.2	18.0	23.8	19.3	16.1	10.4	

Table 157: Exemplary SFH – Results of the energy balance calculation; Procedure: PURES 2010 + TSG-1-004:2010

TABULA

EPISCOPE

*) "Conditioned floor area" is the floor area of the spaces with controlled conditions excluding non-habitable basement or other non-residential spaces, includes a floor area of all floors, if there is more than one [TSG-1-004:2010]

TABULA calculation results for all exemplary buildings

Table 158 shows the results of the TABULA calculation procedure (standard calculation, not adapted) for all three exemplary buildings.

OPE

0	onai	tions)															
Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
	01	Minimum Re- quirement	0.983	83.2	0.0	83.2	94.9	10	11.5	114.1	0	0	0	4	0	0	0
	02	Improved Stan- dard	0.658	60.9	0.0	83.2	101.3	10	11.1	10.3	0	0	0	0	94	0	0
SFH	03	Ambitious Stan- dard / NZEB	0.428	43.3	0.0	83.2	98.4	10	11.5	0.0	0	0	0	45	0	0	0
	11	Minimum Re- quirement	0.983	83.2	0.0	60.9	76.1	10	11.5	0.0	0	0	0	38	0	0	0
	12	Improved Stan- dard	0.658	60.9	0.0	60.9	66.1	10	11.5	55.1	0	0	0	4	0	0	0
SI.N.SFH.06.Gen	13	Ambitious Stan- dard / NZEB	0.428	43.3	23.1	37.9	43.1	10	11.5	0.0	0	0	0	7	47	0	0
ReEx.001	21	Minimum Re- quirement	0.983	83.2	0.0	43.3	58.5	10	11.5	0.0	0	0	0	31	0	0	0
	22	Improved Stan- dard	0.658	60.9	0.0	43.3	58.5	10	11.5	0.0	0	0	0	26	0	0	0
	23	Ambitious Stan- dard / NZEB	0.428	43.3	21.4	21.9	37.2	10	11.5	0.0	0	0	0	17	0	0	0
	01	Minimum Re- quirement	0.879	78.0	0.0	78.0	89.7	10	11.5	109.6	0	0	0	4	0	0	0
	02	Improved Stan- dard	0.586	56.6	0.0	78.0	96.0	10	11.1	10.4	0	0	0	0	90	0	0
тн	03	Ambitious Stan- dard / NZEB	0.385	40.3	0.0	78.0	93.2	10	11.5	0.0	0	0	0	44	0	0	0
	11	Minimum Re- quirement	0.879	78.0	0.0	56.6	71.8	10	11.5	0.0	0	0	0	36	0	0	0
similar in	12	Improved Stan- dard	0.586	56.6	0.0	56.6	61.8	10	11.5	51.9	0	0	0	5	0	0	0
SI.N.TH.06.Gen	13	Ambitious Stan- dard / NZEB	0.385	40.3	23.2	33.3	38.6	10	11.5	0.0	0	0	0	7	42	0	0
ReEx.001	21	Minimum Re- quirement	0.879	78.0	0.0	40.3	55.5	10	11.5	0.0	0	0	0	30	0	0	0
	22	Improved Stan- dard	0.586	56.6	0.0	40.3	55.5	10	11.5	0.0	0	0	0	25	0	0	0
	23	Ambitious Stan- dard / NZEB	0.385	40.3	21.3	19.0	34.3	10	11.5	0.0	0	0	0	16	0	0	0
	01	Minimum Re- quirement	0.430	53.3	0.0	53.3	71.4	15	16.1	15.6	0	0	0	0	69	0	0
MFH	02	Improved Stan- dard	0.286	37.1	0.0	53.3	68.5	15	16.5	0.0	0	0	0	37	0	0	0
No. or an and	03	Ambitious Stan- dard / NZEB	0.213	28.3	27.2	26.2	31.5	15	16.5	0.0	0	0	0	7	36	0	0
	11	Minimum Re- quirement	0.430	53.3	0.0	37.1	59.1	15	15.6	67.8	0	0	0	15	0	0	0
SI.N.MFH.06.Gen ReEx.001	12	Improved Stan- dard	0.286	37.1	0.0	37.1	42.3	15	16.5	38.1	0	0	0	5	0	0	0
	13	Ambitious Stan- dard / NZEB	0.213	28.3	22.7	14.4	29.8	15	16.5	0.0	0	0	0	15	0	0	0

Table 158:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary
	conditions)

Building	Var. N°	Performance Level	h_Transmission W/(m²K)	q_h_nd kWh/(m²a)	q_ve_rec_h_usable kWh/(m²a)	q_h_nd_net kWh/(m²a)	q_g_h_out kWh/(m²a)	q_w_nd kWh/(m²a)	q_g_w_out kWh/(m²a)	q_del_sum_gas kWh/(m²a)	q_del_sum_oil kWh/(m²a)	q_del_sum_coal kWh/(m²a)	q_del_sum_bio kWh/(m²a)	q_del_sum_el kWh/(m²a)	q_del_sum_dh kWh/(m²a)	q_del_sum_other kWh/(m²a)	q_exp_sum_el kWh/(m²a)
	21	Minimum Re- quirement	0.430	53.3	0.0	28.3	33.5	15	16.5	0.0	0	0	0	5	51	0	0
	22	Improved Stan- dard	0.286	37.1	0.0	28.3	43.5	15	16.5	0.0	0	0	0	23	0	0	0
	23	Ambitious Stan- dard / NZEB	0.213	28.3	0.0	28.3	50.4	15	16.1	74.6	0	0	0	0	0	0	0
	01	Minimum Requirement	0.591	58.7	0.0	58.7	76.8	15	16.1	15.5	0	0	0	0	74	0	0
	02	Improved Standard	0.394	40.1	0.0	58.7	73.9	15	16.5	0.0	0	0	0	39	0	0	0
AB	03	Ambitious Standard / NZEB	0.306	30.4	26.8	31.9	37.2	15	16.5	0.0	0	0	0	7	42	0	0
	11	Minimum Requirement	0.591	58.7	0.0	40.1	62.2	15	15.6	70.9	0	0	0	15	0	0	0
	12	Improved Standard	0.394	40.1	0.0	40.1	45.3	15	16.5	40.4	0	0	0	5	0	0	0
SI.N.AB.06.Gen	13	Ambitious Standard / NZEB	0.306	30.4	22.5	17.6	32.9	15	16.5	0.0	0	0	0	16	0	0	0
ReEx.001	21	Minimum Requirement	0.591	58.7	0.0	30.4	35.6	15	16.5	0.0	0	0	0	4	53	0	0
	22	Improved Standard	0.394	40.1	0.0	30.4	45.6	15	16.5	0.0	0	0	0	24	0	0	0
	23	Ambitious Standard / NZEB	0.306	30.4	0.0	30.4	52.4	15	16.1	76.7	0	0	0	0	0	0	0
Explanation of Q	uanti	ties (TABULA Data	ields)														
h_Transmission		W/(m ² K) floor area			er coeffi	cient by	transmis	sion / inc	dicator fo	or energ	y quality	of buildi	ng envel	ope (cor	mpactne	ss + insu	lation)
q_h_nd		kWh/(m ² a) energy nee															
q_ve_rec_h_usable kWh/(m²a) usable contribution of ventilation heat recovery q_h_nd_net kWh/(m²a) net energy need for heating (q_h_nd - q_ve_rec_h_usable)																	
q_h_nd_net kWh/(m²a) net energy q_g_h_out kWh/(m²a) generated								sses + d	istributio	n losses	5)						
q_w_nd kWh/(m ² a) net energy		need dor	nestic ho	ot water	05		0										
q_g_w_out		kWh/(m ² a) generated	heat dhw	(net ene	ergy nee	d + stora	ige losse	es + distr	ibution l	osses)							
q_del_sum_gas,o coal,bio,, _ dh,other,	el,	kWh/(m²a) sum delive	red energ	y, energ	ıy carrier	gas, oil	coal, bi	omass, e	electricity	y, distric	t heating	, other e	nergy ca	rriers			

<SI> Slovenia

267

EPISCOPE TABULA

q_exp_sum_el

kWh/(m²a) sum produced electricity (negative value)

EPISCOPE

3.17.3 Sources / References Slovenia

Table 159: Sources / References Slovenia

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[Javna agencija RS za energijo 2012]	Javna agencija RS za energijo: Poročilo o stanju na področju energetike v Sloveniji v letu 2011, Maribor, 2012 <u>http://www.agen-</u> <u>rs.si/documents/10926/38704/Poro%C4%8Dilo%2</u> <u>00%20stanju%20na%20podro%C4%8Dju%20ene</u> <u>rgetike%20v%20Sloveniji%20v%20letu%202011</u>	Report on the Energy Sector in Slovenia in 2011
[NP NZEB 2014]	Ministrstvo za infrastrukturo in proctor, Gradbeni inštitut ZRMK: Nacionalni načrt za povečanje števila skoraj ničenergijskih stavb. Ljubljana, 2014. http://ec.europa.eu/energy/efficiency/buildings/impl ementation_en.htm	National plan for nearly-zero energy buildings
[NR COL 2014]	Ministrstvo za infrastrukturo in proctor, Gradbeni inštitut ZRMK: Strokovne podlage za določitev stroškovno optimalnih ravni za minimalne zahteve glede učinkovitosti z uporabo primerjalnega me- todološkega okvira. Ljubljana, 2014. <u>http://ec.europa.eu/energy/efficiency/buildings/impl</u> ementation_en.htm	National reports on calculation of cost-optimal levels of minimum energy performance require- ments
[PURES 2010]	Pravilnik o učinkoviti rabi energije v stavbah. Ministrstvo za okolje in prostor. Ljubljana, 2010. http://www.uradni-list.si/1/content?id=98727	Regulation on efficient use of energy in buildings
[TSG-01-004:2010]	Tehnična smernica učinkovita raba energije. Ministrstvo za okolje in prostor. Ljubljana, 2010. <u>http://www.arhiv.mop.gov.si/fileadmin/mop.gov.si/p</u> ageuploads/zakonodaja/prostor/graditev/TSG-01- 004_2010.pdf	Technical guideline on energy efficient use
[ZRMK 2011]	Rakušček, A., Šijanec Zavrl, M., Stegnar, G. Ti- pologija stavb: energetska učinkovitost stavb in tipične stavbe v Sloveniji. Gradbeni inštitut ZRMK. Ljubljana, Slovenija, 2011. <u>http://www.building-</u> <u>typol-</u> <u>oqy.eu/downloads/public/docs/brochure/SI_TABU</u> LA_TypologyBrochure_ZRMK.pdf	National typology brochure for the Slovenian residential building stock, developed during the IEE Project TABULA
[ZRMK 2012]	Rakušček, A., Šijanec Zavrl, M., Stegnar, G. Na- tional scientific report - Slovenia. IEE TABULA – Typology approach for building stock assessment. Gradbeni inštitut ZRMK. Ljubljana, 2012. <u>http://www.building-</u> <u>typol-</u> <u>ogy.eu/downloads/public/docs/scientific/SI_TABUL</u> <u>A_ScientificReport_ZRMK.pdf</u>	Description of the revision and further develop- ment of the national residential building typology Slovenia
[ZRMK 2014]	Stegnar, G., Rakušček, A., Šijanec Zavrl, M. Ti- pologija stavb: energetska učinkovitost stavb in tipične stavbe v Sloveniji. Gradbeni inštitut ZRMK; Ljubljana, Slovenija, 2014. <u>http://episcope.eu/fileadmin/tabula/public/docs/bro chure/SI_TABULA_TypologyBrochure_ZRMK.pdf</u>	National typology brochure for the Slovenian residential building stock, developed during the IEE Project EPISCOPE

4 Summary and Outlook

During the last decades significant steps have been made towards improving the energy performance of new buildings in Europe. A cornerstone was set in 2002 with the Energy Performance of Buildings Directive (EPBD), which introduced stipulations regarding the application of minimum requirements on new and existing buildings as well as the energy certification of buildings. As a next step, in the recast of the EPBD in 2010 the term 'nearly zero-energy building' (NZEB) was introduced. All EU member states have been asked to set up plans for the introduction of this ambitious standard for buildings newly built after December 2020.

In the last few years it has been discussed how nearly zero-energy buildings can be put into practice and in which way binding requirements can be set up. Despite the tight implementation and reporting schedule determined by the EPBD recast, only few countries defined officially national approaches (e.g. AT, BE, DK); in most of the European member states NZEB definitions are still under debate.

The present report provides deeper insights in the status quo in the respective countries, their methodological approaches, the current minimum requirements and the enacted or assumed future NZEB standards. The substance of the new buildings regulations of a given country and its envisaged changes to include NZEBs has been specified by all EPISCOPE partners by use of a common table template. Methodological varieties are for example:

- the definition of requirements (limits for U-values, for the heat transfer coefficient by transmission, the energy need for heating, the primary energy demand; defined by fixed values, a formula or a set of reference features);
- the calculation periods for energy need for heating (building) and delivered energy (system): yearly/seasonal, monthly, hourly;
- the type and the height of factors for weighting delivered energy (agreed factors, total or non-renewable primary energy factors);
- the type and height of valuating on-site production of electricity (consideration of self-use or complete feed-in).

Depending on the classification scheme of the national building typology, each EPISCOPE partner has chosen two or more exemplary buildings representing the most recent construction year class. For each country variants of the main energy related features have been specified to meet the national minimum requirements for new buildings, an improved standard, and the (decided or assumed) NZEB standard.

The construction elements and their U-values, the type of ventilation and heat supply system and the resulting energy demand of the exemplary buildings is presented in the form of building display sheets and disseminated via typology brochures²⁹. The present report is depicting such display sheets from 17 countries, showing which different types and depths of information are possible. The assembly may be useful to stimulate similar brochures in other countries or on different geographical levels but also to further stimulate the development and improvement of the current display sheets.

Beyond these national activities, the EPISCOPE partners have transferred their datasets of exemplary buildings to the common TABULA data structure in order to make the features and energy performance values understandable and comparable between countries. Energy balance calculations have been performed for all of these buildings by use of standard boundary conditions and national climate data. As a result the heat transfer coefficient by transmission, the energy need for heating and the delivered energy by energy carrier (demand and production separately) have been provided for all exemplary buildings at the end

²⁹ Downoadable from <u>http://episcope.eu/communication/download/</u>

of each country chapter. According to the TABULA concept the before mentioned quantities are representing the basic level for specifying the energy performance of buildings. Thus, the numbers can directly be compared between the countries. The datasets and calculations will later also be available in a new version of the TABULA WebTool³⁰ (presumably available in the beginning of 2015).

As regards the energy performance levels of the exemplary buildings a large variation can be stated – even for similar climatic zones: In some countries far reaching minimum requirements close to the best available technology can already be found today. Here only small steps to possible NZEB standards are to be expected. In other countries rather weak requirements for NZEBs are discussed today. As stated in the introduction of this report, part of the European building stock of the year 2050 has not yet been built. Facing the danger of climatic changes, the implementation of very ambitious standards seems to be necessary to meet the required reduction in energy use.

³⁰ Online available at: <u>http://episcope.eu/building-typology/webtool/</u>

List of Figures

Figure 1:	Key Directives related to buildings
Figure 2:	Key years for nearly zero energy buildings (Directive 2010/31/EC)
Figure 3:	Timeline for implementation of the cost-optimal levels and nZEB requirements (Directive 2010/31/EC) [BPIE 2011]
Figure 4:	Holistic approach of the set of EPB-standards (source FprCEN/TS 16628:2014)7
Figure 5:	Perimeters and assessment boundaries (source FprEN 15603:2014) 8
Figure 6:	Towards a sustainable nZEB definition. [BPIE 2011]10
Figure 7:	Example of financial, energy and environmental gaps between current and cost-optimal requirements and nZEB levels [BPIE 2013a]11
Figure 8:	Classification scheme ("Building Type Matrix") of the Austrian residential building typology [AEA, 2014], now extended towards new buildings23
Figure 9:	"Building Display Sheet" of the exemplary MFH <at> [AEA, 2014]26</at>
Figure 10:	Classification scheme ("Building Type Matrix") of the Belgian residential building typology [VITO, 2014], now extended towards new buildings38
Figure 11:	"Building Display Sheet" of the exemplary MFH <be> [VITO, 2014]41</be>
Figure 12:	Classification scheme ("Building Type Matrix") of the Cyprus residential building typology
Figure 13:	"Building Display Sheet" of the exemplary MFH.04 <cy> [CUT, 2014]53</cy>
Figure 14:	Classification scheme ("Building Type Matrix") of the Czech residential building typology [STU-K 2014], now extended towards new buildings (age band 2011 onwards)
Figure 15:	"Building Display Sheet" of the exemplary SFH <cz>66</cz>
Figure 16:	Dependence of the global costs of a single-family (left chart) and a multi- family house (right chart) from the energy performance level (new buildings / assumption: medium energy price development) [BPIE / IWU 2013]73
Figure 17:	Monthly compensation by the German EnEV calculation method77
Figure 18:	Classification scheme ("Building Type Matrix") of the German residential building typology [IWU 2014a], now extended towards new buildings81
Figure 19:	"Building Display Sheet" of the exemplary MFH <de> (further examples in [IWU 2014a])85</de>
Figure 20:	Classification scheme ("Building Type Matrix") of the Danish residential building typology, now extended towards new buildings100
Figure 21:	"Building Display Sheet" of the exemplary SFH <dk> [SBi 2014]102</dk>
rigule 21.	
Figure 22:	Scale for the energy certification of single family dwellings in all the Winter Climatic Zones in terms of the Primary Energy Consumption. Comparison of the minimum requirements of the Building Technical Codes 2006 and 2013. Source: Grupo Termotecnia – University of Seville

272 New Buildings in National Residential Building Typologies TABULA

EPISCOPE

	Observition (included (ID vitation Trans MatrixII) of the Operation metiday (int
Figure 24:	Classification scheme ("Building Type Matrix") of the Spanish residential building typology – region "Mediterranean Climate" (one of 3 climatic zones), including new buildings (post 2007)
Figure 25:	"Building Display Sheet" of the exemplary MFH <es> [IVE, 2014]117</es>
Figure 26:	Evolution of primary energy demand for heating, cooling, DHW, lighting, ventilation and auxiliaries for residential buildings with fossil combustibles in climate zone H2 [Pouget 2014]
Figure 27:	Legal status of thermal regulations and EPC [Pouget 2014]122
Figure 28:	Differences between thermal regulations and EPC calculation [Pouget 2014]
Figure 29:	Values of Cep,max in kWh _{PE} /(m ² .yr) for multi-family houses in the 8 climate zones (Mc GES = 0, average size of dwellings $30 / 60 / 90 m^2$, altitude <400 m, CE1 / CE2) [Pouget 2011]124
Figure 30:	Schema of the structuring of input data of Th-BCE 2012 calculation method [Th-BCE 2012]126
Figure 31:	Example for results out of EPC calculation [DPE OPHM 2009]127
Figure 32:	Principe of energy balance for Bepos-effinergie label [Effinergie 2013]128
Figure 33:	Primary energy factors Bepos-effinergie [Effinergie 2013]128
Figure 34:	Values for reference consumption of primary energy for all uses which are not taken into account by regulation for Bepos-effinergie [Effinergie 2013]
Figure 35:	Calculation of renewable energy potential for Bepos-effinergie label [Effinergie 2013]129
Figure 36:	French climatic zones and segmentation for different passive house variants [Pouget 2014]
Figure 37:	Classification scheme ("Building Type Matrix") of the French residential building typology including new buildings since 2012
Figure 38:	Distribution of dwellings depending on climate zones in France [INSEE 2006]138
Figure 39:	"Building Display Sheet" of the exemplary MFH.10 <fr>138</fr>
Figure 40:	Classification scheme ("Building Type Matrix") of the English residential building typology including new buildings (post 2010)150
Figure 41:	Building Display Sheet" of the exemplary SFH <gb> [from BRE, 2014]152</gb>
Figure 42:	Calculated average final and primary heating energy conservation (kWh/m ²) and payback period (years) for various energy conservation measures. The error bars correspond to the maximum and the minimum values [Droutsa et al. 2014]
Figure 43:	Classification scheme ("Building Type Matrix") of the Hellenic residential building typology, now extended towards new buildings164
Figure 44:	"Building Display Sheet" of the exemplary SFH <gr> [NOA 2014]168</gr>
Figure 45:	Development of the requirements on the specific heating energy need (W/m ³ K), as a function of the surface to volume ratio $[m^2/m^3]$ 176
Figure 46:	Classification scheme ("Building Type Matrix") of the Hungarian residential building typology including new buildings

List of Figures

273

Figure 47:	"Building Display Sheet" of the exemplary MFH <hu> [BME, 2014]182</hu>
Figure 48:	Classification scheme ("Building Type Matrix") of the Irish residential building typology [Energy Action 2014], now extended towards new buildings
Figure 49:	"Building Display Sheet" of the exemplary SFH <ie> [Energy Action 2014] </ie>
Figure 50:	Assessment boundary and geographical perimeters (http://arc.housing.salle.url.edu/semanco/kms/index.php/Energy_and_Relat ed_Terms)
Figure 51:	Classification scheme ("Building Type Matrix") of the Italian residential building typology [POLITO 2014], now extended towards new buildings.205
Figure 52:	"Building Display Sheet" of the exemplary MFH <it> (further examples in [POLITO 2014])208</it>
Figure 53:	Classification scheme ("Building Type Matrix") of the Dutch residential building typology216
Figure 54:	Classification scheme ("Building Type Matrix") of the Dutch residential building typology, further building types for single family and terraced houses
Figure 55:	Classification scheme ("Building Type Matrix") of the Dutch residential building typology, further building types for apartment buildings218
Figure 56:	"Building Display Sheet" of the exemplary multi-family building221
Figure 57:	EPC label from Norway227
Figure 58:	Four ZEB ambition levels for an all-electric office building228
Figure 59:	Classification scheme ("Building Type Matrix") of the Norwegian residential building typology [Brattebø, O'Born, Sartori, Klinksi, & Nørstebø, 2014]233
Figure 60:	"Building Display Sheet" of the exemplary NO.N.AB.07 from Norwegian residential building typology [Brattebø, O'Born, Sartori, Klinksi, & Nørstebø, 2014]
Figure 61:	Breakdown of energy carriers for households in Serbia for 2012243
Figure 62:	Classification scheme ("Building Type Matrix") of the Serbian residential building typology, now extended towards new buildings246
Figure 63:	"Building Display Sheet" of the exemplary MFH250
Figure 64:	Overview of the tightening prescribed minimum requirements for the energy performance of buildings in Slovenia and increasing complexity of minimum requirements
Figure 65:	Classification scheme ("Building Type Matrix") of the Slovenian residential building typology [ZRMK 2014], now extended towards new buildings262
Figure 66:	"Building Display Sheet" of the exemplary SFH <si> [ZRMK 2014]264</si>

OPE

Table 1:	Sources / References Introduction 2
Table 2:	Sources / References Principles and Benchmarks for Nearly Zero-Energy Buildings
Table 3:	Extract from the Austrian national plan for new buildings [OIB, 2014a]19
Table 4:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB definition in Austria20
Table 5:	Austrian primary energy factors21
Table 6:	Exemplary new buildings representing the latest construction year classes (2010)
Table 7:	Exemplary single-family house (MFH) – definition of variants25
Table 8:	Exemplary MFH – Results of the energy balance calculation; Procedure: OIB Guidelines 6, 201127
Table 9:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)
Table 10:	Sources / References Austria29
Table 11:	E-level requirements from 2006-2021 in the Flemish Region (Belgium)31
Table 12:	General legal requirements for 2014 in the Flemish Region (Belgium)31
Table 13:	General requirements to comply with NZEB in the Flemish Region (Belgium)
Table 14:	Required thermal insulation values for current legal requirements and NZEB in the Flemish Region (Belgium)32
Table 15:	General legal requirements for 2014 in the Brussels Capital Region (Belgium)
Table 16:	Required thermal insulation values for current legal requirements in the Brussels Capital Region (Belgium)
Table 17:	General legal requirements for 2015 (and NZEB) in the Brussels Capital Region (Belgium)
Table 18:	General legal requirements for 2014 in the Walloon Region (Belgium)34
Table 19:	Required thermal insulation values for current legal requirements in the Walloon Region (Belgium)34
Table 20:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB definition in Belgium (Flanders)
Table 21:	Belgian primary energy factors (Flanders)
Table 22:	Exemplary new buildings representing the latest construction year classes (2012)
Table 23:	Exemplary multi-family house (MFH) – definition of variants40
Table 24:	Exemplary MFH – Results of the energy balance calculation; Procedure: Belgian (Flemish) EPB calculation procedure42

EPISCOPE	TABULA
----------	--------

List of Tables

275

Table 25:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)43
Table 26:	Sources / References Belgium
Table 27:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (preliminary) NZEB definition in Cyprus
Table 28:	Cyprus primary energy factors49
Table 29:	Exemplary new buildings representing the latest construction year classes (2014)
Table 30:	Exemplary multi-family house (MFH) – definition of variants [MCIT, 2009b]
Table 31:	Exemplary MFH.04 – Results of the energy balance calculation; Procedure: TABULA method
Table 32:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)
Table 33:	Sources / References Cyprus55
Table 34:	Required energy performance indicators for new buildings and refurbishments
Table 35:	Non renewable primary energy decrement factors for reference buildings 58
Table 36:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of (assumed) NZEB definition in the Czech Republic
Table 37:	Primary energy conversion factor by HVAC system type62
Table 38:	Czech primary energy factors62
Table 39:	Current requirements for NZEB by building type63
Table 40:	Exemplary new buildings representing the latest construction year classes (2011)
Table 41:	Exemplary new single family house (SFH) – definition of variants66
Table 42:	Exemplary SFH – Results of the energy balance calculation; Czech national calculation methodology [UNMZ 2013]67
Table 43:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)68
Table 44:	Sources / References Czech Republich69
Table 45:	Share of KfW funding levels [IWU 2013c]74
Table 46:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in Germany
Table 47:	German primary energy and greenhouse gas emission factors78
Table 48:	Exemplary new buildings representing the latest construction year classes (2010 2015; 2016)
Table 49:	Exemplary multi-family house (MFH) – definition of variants
Table 50:	Exemplary MFH – Results of the energy balance calculation; Procedure: EnEV 2009 / 2014 DIN V 4108-6 + DIN V 4701-10

EPISCOPE

Table 51:	Exemplary new buildings construction year class 2010 2015 – Results
Table 52:	of the TABULA calculation procedure (standard boundary conditions)87 Exemplary new buildings construction year class "from 2016" – Results of
	the TABULA calculation procedure (standard boundary conditions)88
Table 53:	Sources / References Germany
Table 54:	Identified typical building periods in the Danish EPISCOPE building typology
Table 55	Development of energy performance requirements (kWh primary energy per m ² of heated gross floor area per year) for typically sized residential and non-residential buildings in Denmark
Table 56	Maximum allowed design (outdoor temperature = -12 °C) transmission heat loss through the opaque part of the building envelope (W/m^2) 95
Table 57:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB definition in Denmark
Table 58:	Danish primary energy factors99
Table 59:	Exemplary new buildings representing the latest construction year classes (2011)
Table 60:	Exemplary single family house (SFH) – definition of variants101
Table 61:	Three different exemplary SFH – Results of the energy balance calculation; Procedure: The calculation procedure in the according to the Danish building code, BR10 [BR10]102
Table 62:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)103
Table 63:	Sources / References Denmark104
Table 64:	Base value and energy consumption correction factor per surface106
Table 65:	Base value and heating energy demand correction factor per surface107
Table 66:	National Basic Procedure for energy certification of new building108
Table 67:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Spain
Table 68:	Conversion factors of final energy to total primary energy, to non-renewable primary energy and to CO_2 emissions included in the tool published by the government [Ministry of Development, 2014] to meet the requirements in force
Table 69:	Spanish primary energy and CO ₂ Emissions factors published by IDAE [IDAE, 2011]111
Table 70:	Exemplary new buildings representing the latest construction year classes (2007)
Table 71:	Exemplary multi-family house (MFH) – definition of variants116
Table 72:	Exemplary MFH – Results of the energy balance calculation; Procedure: National Basic Procedure for energy certification of new building117
Table 73:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)

List of Tables

277

Table 74:	Sources / References Spain119
Table 75:	Overview features current Thermal Regulation Calculation Method compared to the assumed NZEB definition for residential buildings in France
Table 76:	Overview features current EPC calculation method compared to the assumed NZEB definition for residential buildings in France
Table 77:	French primary energy factors134
Table 78:	Exemplary new buildings representing the latest construction year classes (2012)
Table 79:	Exemplary multi-family house (MFH) – definition of variants
Table 80:	Exemplary MFH – Results of the energy balance calculation; Procedure: Method Th-BCE 2012139
Table 81:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions, climate zone: FR.N)
Table 82:	Sources / References France141
Table 83:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in England145
Table 84:	Primary Energy Factors and CO2 emission factors149
Table 85:	Exemplary new buildings representing the latest construction year classes (2010)
Table 86:	Exemplary single-family house (SFH) – definition of variants
Table 87:	Exemplary SFH – Results of the energy balance calculation; Procedure: SAP Methodology (2009) [DECC/BRE, 2011]153
Table 88:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)154
Table 89:	Sources / References England155
Table 90:	Minimum allowable U-values (W/m2K) for different building elements at the Hellenic climate zones according to the old TIR and KENAK
Table 91:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Greece
Table 92:	Hellenic primary energy factors162
Table 93:	Exemplary new buildings representing the latest construction year classes (2011)
Table 94:	New building requirements per climate zone for three energy performance standards (current, improved and NZEB)167
Table 95:	Exemplary single-family house (SFH), climate zone B – definition of variants
Table 96:	Exemplary SFH – Results of the energy balance calculation; Procedure: TEE-KENAK
Table 97:	Exemplary new buildings – Results of the TABULA calculation procedure (climate zone B; standard boundary conditions)

278 New Buildings in National Residential Building Typologies TABULA

Table 98: Sources / References Greece171 Table 99: Maximum permitted values for the U values of elements in the current and Table 100: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) Hungarian primary energy factors179 Table 101: Exemplary new buildings representing the latest construction year classes Table 102: Table 103: Exemplary multi-family house (MFH) - definition of variants181 Table 104: Exemplary MFH – Results of the energy balance calculation; Procedure: national calculation method according to the current building code: [TNM, Exemplary new buildings - Results of the TABULA calculation procedure Table 105: (standard boundary conditions)......184 Sources / References Hungary184 Table 106: Table 107: Table 108: Table 109: Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the NZEB Table 110: Table 111: Exemplary new buildings representing the latest construction year classes Table 112: Table 113: Exemplary SFH – Results of the energy balance calculation; Procedure: DEAP......194 Table 114: Exemplary new buildings - Results of the TABULA calculation procedure (standard boundary conditions)......195 Current calculation method for new residential buildings referring to the Table 115: building regulations requirements and special aspects of the (assumed) NZEB definition for residential buildings in Italy......201 Table 116: Table 117: Exemplary new buildings representing the latest construction year classes Table 118: Exemplary multi-family house (MFH) – definition of variants207 Table 119: Exemplary MFH – Results of the energy balance calculation; Procedure: Exemplary new buildings - Results of the TABULA calculation procedure Table 120: Table 121:

List of Tables

279

Table 122:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in the Netherlands
Table 123:	Dutch primary energy factors215
Table 124:	Exemplary new buildings representing the latest construction year classes (2006)
Table 125:	Exemplary multi-family house (MFH) – definition of variants220
Table 126:	Exemplary MFH – Results of the energy balance calculation; Procedure: TABULA method
Table 127:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)
Table 128:	Sources / References for the Netherlands223
Table 129:	Delivered energy determining the energy class label
Table 130:	Values of heating needs determining the heating system performance colour
Table 131:	Future assumed CO2 emission factors229
Table 132:	CO2 emission factors for different biofuels229
Table 133:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the (assumed) NZEB definition in Norway
Table 134:	Primary energy factors Norway231
Table 135:	Exemplary new buildings representing the latest construction year classes (2011)
Table 136:	Exemplary apartment block (AB) – definition of variants for Norwegian exemplary multi-family house
Table 137:	Exemplary AB – Results of the energy balance calculation for "NO.N.AB.07.Gen"; Procedure: NS3031:2007
Table 138:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)
Table 139:	Sources / References Norway238
Table 140:	Comparative review of the development of the calculation requirements for buildings
Table 141:	Allowed U values (W/m2K) for some building elements with comparison to the previous standards (second climatic zone – moderate continental climate)
Table 142:	Possible initiative towards "nearly zero energy buildings" for Serbia for new buildings (residential buildings)241
Table 143:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Serbia
Table 144:	Feed-in tariff in Serbia (summarized outline)244
Table 145:	Serbian weighting factors / primary energy and CO2 emission factors244

280 New Buildings in National Residential Building Typologies TABULA

Table 146:	Exemplary new buildings representing the latest construction year classes (2012)
Table 147:	Exemplary multi-family house (MFH) – definition of variants249
Table 148:	Exemplary MFH – Results of the energy balance calculation; Procedure: Serbian EPC calculation procedure [Rulebook 2011]251
Table 149:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)252
Table 150:	Sources / References Serbia253
Table 151:	Maximum value of primary energy per type of building (draft)258
Table 152:	Current calculation method for new residential buildings referring to the building regulations requirements and special aspects of the assumed NZEB definition in Slovenia
Table 153:	Shares of different types of electricity production in Slovenia 2011 [Javna agencija RS za energijo 2012]260
Table 154:	Slovenian primary energy factors
Table 155:	Exemplary new buildings representing the latest construction year classes (2009)
Table 156:	Exemplary single-family house (SFH) – definition of variants
Table 157:	Exemplary SFH – Results of the energy balance calculation; Procedure: PURES 2010 + TSG-1-004:2010
Table 158:	Exemplary new buildings – Results of the TABULA calculation procedure (standard boundary conditions)
Table 159:	Sources / References Slovenia

1.00

EPISCOPE