

Steel Fibre Reinforced Rubberised Concrete for Forgiving Road Infrastructure

Dr. Thomaida Polydorou *Marie Sklodowska-Curie Postdoctoral Research Fellow* Cyprus University of Technology

Outline

SAFER Project Introduction Circular Economy SAFER Contribution to Circular Economy

Rubberised Concrete for Forgiving Infrastructure

Reduction of fatalities in road transport

- 1 of top ten goals set by the European Union's "White paper on transport"
- The goal of reducing to half by 2020 will **NOT** be reached

☆ Unless the decrease at much higher rates starting **now!**

(European Commission (EC) (2011). White Paper on Transport – Roadmap to a single European transport area – Towards a competitive and resource efficient transport system)

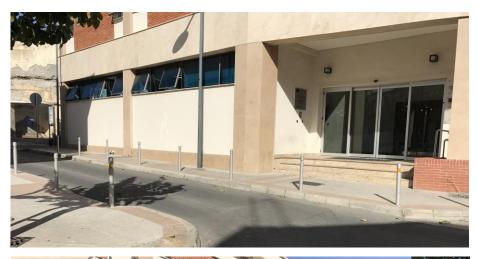
Most Vulnerable Road Users

- Motorcyclists
 - Comprise a significant 15% of all road fatalities in Europe
- An additional 3% of all road fatalities are
 - moped and
 - other light-powered 2-wheeler riders

Current Road Barriers..

- Hitting a barrier is a factor in 8-16% of deaths
- Injuries are up to 5 times more severe

Current Road Barriers..


- Hard metal, Plain concrete
- Limited deformability
- Limited energy absorption

\implies Upon collision, rider bodies absorb impact

The NEED for Forgiving Infrastructure

The NEED for Forgiving Infrastructure

 \circ Plain concrete

- Limited deformability, Limited energy absorption
- + Rubber \implies energy absorption, impact resistance
- + Steel fibres \implies flexural strength, energy absorption and toughness
- + Textile/polymer fibres \Rightarrow improved fresh concrete properties

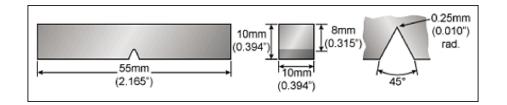
The NEED for Forgiving Infrastructure

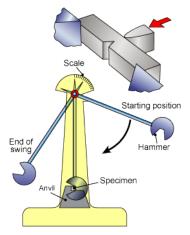
•There is critical need to adopt improved barrier designs to protect vulnerable road users

(EuroRAP (2008). Barriers to change: Designing safe roads for motorcyclists)

Our goal for road barriers

- Absorb impact energy
- Reduce injury and damage severity


Proposed Research

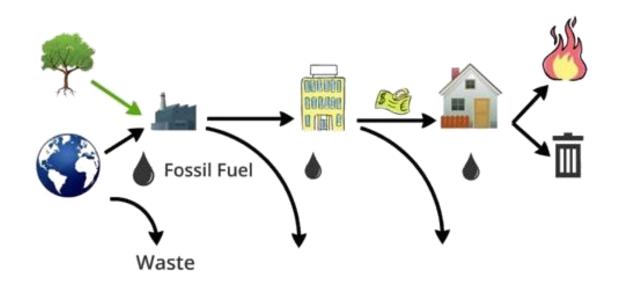

• Proposed Mix Designs

 ${\odot}10\%$, 40% and 60% $\,$ aggregate volume replacement $\,$

olmpact testing using

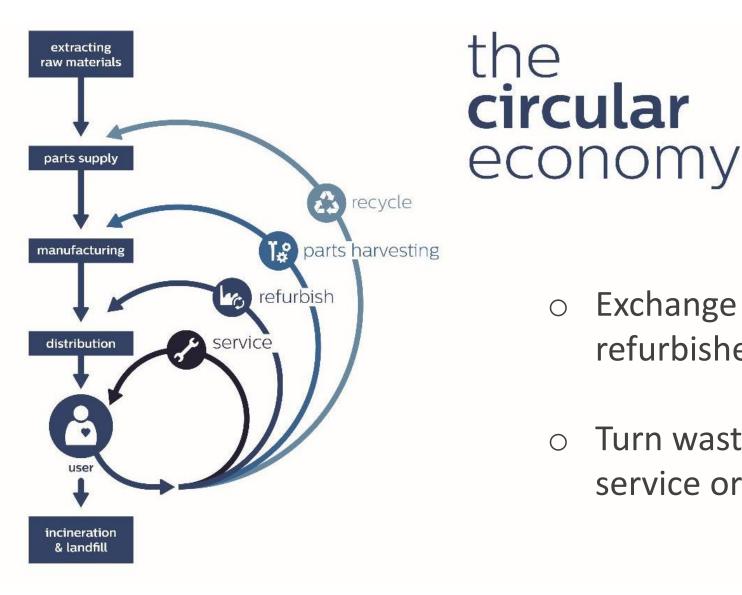
OCharpy testing machine

<u>Circular Economy</u> SAFER Contribution


"closing the loop"

http://www.housingeurope.eu

Take-make-consume and dispose model


This model is not sustainable!

"2020 Resource Efficiency" agenda:

- boost economic performance while reducing resource use;
- identify and create new opportunities for economic growth and greater innovation and boost the EU's competitiveness;
- oensure security of supply of essential resources;
- ofight against climate change and limit the environmental impacts of resource use

- Exchange by-products;
 refurbished or manufactured
- Turn waste into a resource service or change use

- Recycling 65% of municipal waste by 2030
- Recycling 75% of packaging waste by 2030
- Reduce landfill to maximum of 10% of all waste by 2030
- Ban on landfilling of separately collected waste
- Promotion of economic instruments to discourage landfilling
- Promote re-use and stimulate industrial symbiosis
- Economic incentives for producers to put greener products on the market and support recovery and recycling schemes

Main Phases of Circular Economy

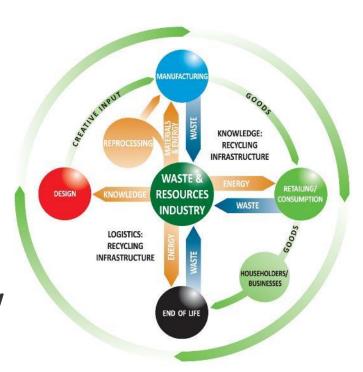
- Interlinked phases since materials can be used in a cascading way, e.g;
 - ${\scriptstyle \circ}$ industries exchange by-products,
 - Products are refurbished or remanufactured

Main aim → minimise resources escaping the loop!

Transition to Circular Economy

Business and market model transformation requires:

- "Cradle to cradle" Life cycle assessment
- Definition of Key performance indicators
- Development of industrial symbiosis
 - e.g. UK: NISP



Turning waste into resources and new uses through innovation and creativity

Circular Economy Benefits

In Europe, the implementation of circular economy can achieve:

Overall cost savings worth up to €600 billion/year and a GDP boost by up to 4%
 (=> Boosting job growth)

e.g if 95% of mobile phones were collected, this could generate savings on manufacturing material costs of more than €1 billion

Reduction of greenhouse gas emissions by 2-4%

 European companies can benefit from the fast growth in the market of eco-industries

SAFER Contribution to Circular Economy

- Positive contribution of SAFER by developing products and applications which:
- Are material and energy efficient during their production and use phases;
- Use ALL secondary raw materials from End-of-life tyre recycling in innovative concrete engineering applications

Acknowledgements

Horizon 2020 European Union funding for Research & Innovation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. [748600]

Thank you

www.safer.cut.ac.cy thomaida.polydorou@cut.ac.cy